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Abstract In this paper, a new method for analysis of the pseudoelastic response of shape memory alloy thick-
walled cylinders subjected to internal pressure is proposed. Two cases of short and long cylinders are considered
by assuming the plane stress and plane strain conditions. In each case, a three-dimensional phenomenological
SMA constitutive model is simplified to obtain the corresponding two-dimensional constitutive relations. The
cylinder is partitioned into a finite number of narrow annular regions, and appropriate assumptions are made in
order to find a closed-form solution for the equilibrium equations in each annular region. The global solution
is obtained by enforcing the stress continuity condition at the interface of the annular regions and imposing the
boundary conditions. Several numerical examples are presented to demonstrate the efficiency of the proposed
method, and the results are compared with three-dimensional finite element simulations.

Keywords Shape memory alloy (SMA) · Thick-walled cylinder · Pseudoelastic · Internal pressure

1 Introduction

Considerable increase in the use of active (multifunctional) materials in recent years has led to an excessive
interest in analysis of different types of active materials in various shapes. Among several types of active mate-
rials, shape memory alloys (SMAs) have been extensively studied and have also been used in a wide variety
of applications ranging from biomechanics [30] to aerospace [10], and civil engineering [6]. The widespread
use of SMAs is mainly because of their unique ability in generating relatively large inelastic deformations and
high stresses. Distinctive properties of SMAs are a consequence of their ability in changing their crystallo-
graphic structure between a high symmetry parent phase (austenite) and a low symmetry phase (martensite) in
response to mechanical and/or thermal loads. For a comprehensive discussion on general properties of SMAs
and the phase transformation phenomenon, readers are referred to Müller and Xu [17], Müller and Seelecke
[24], Lagoudas [25], and Mirzaeifar et al. [22].

The transformation between the two stable phases, called martensitic phase transformation, results in sig-
nificant challenges in introducing realistic constitutive relations for shape memory alloys. Although there are
some micromechanical approaches in developing SMA constitutive relations [28,29], macroscopic phenom-
enological models are more common in practice due to their compatibility with numerical methods. These
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models are based on continuum thermomechanics and construct a macroscopic free energy potential depend-
ing on the state and internal variables used to describe the measure of phase transformation. Consequently,
evolution equations are postulated for the internal variables and the Second Law of Thermodynamics is used in
order to derive constraints on the material constitutive equations. In recent years, different constitutive models
have been introduced by different choices of internal state variables and their evolution equations. Among the
most widely accepted models, we can mention the cosine model [20], the exponential model [34], and the
polynomial model [4]. Lagoudas et al. [15] unified these models using a thermodynamic framework.

Highly non-linear coupled material response of SMAs—a consequence of the solid-to-solid phase trans-
formation—restricts the applicability of the available solution methods for analysis of many SMA structures
among which finite element method is the most common. There are rare attempts for analyzing even simple
SMA structures using analytical or semi-analytical methods. The availability of closed-form solutions for
SMA structures is primarily affected by the constitutive relations in use. In addition to the constitutive rela-
tions, the complexity of the structure can play a key role in finding closed-form solutions. Lagoudas et al. [16]
presented a one-dimensional reduction of the unified SMA constitutive relations of Lagoudas et al. [15] and
using this model proposed closed-form expressions for the martensitic volume fraction and transformation
strains in uniaxial loading of an SMA prismatic bar. However, an explicit constitutive relation for the axial
stress component as a function of axial displacement was not introduced; a numerical method was necessary
for solving the loading/unloading response of bars (see [17]). They used this solution technique in conjunction
with finite element method for dynamic analysis of polycrystalline SMA rods. Feng and Sun [7] presented
an algorithm for analyzing shakedown of SMA structures subjected to cyclic or varying loads. They used a
plasticity framework and calculated a lower bound of loads for transformational shakedown of SMAs without
the necessity of a step-by-step analysis along the loading history.

In another attempt for finding semi-closed-form solutions for two-dimensional SMA structures, Birman
[1] considered an infinite shape memory alloy plate with a circular hole subjected to biaxial tensile stresses
applied at infinity. The solution was obtained by the plane stress assumption based on the two-dimensional
form of Tanaka’s constitutive relations [33]. He presented two different solutions for stress analysis that are
called by him “closed-form-solution” and “exact solution”. In the latter, it is assumed that for the SMA with
phase transformation, the ratio of the radial to circumferential stress is identical to that in the elastic case. As it
will be shown in this paper, this assumption cannot be justified. In the “closed-form” solution, there are some
unrealistic simplifying assumptions; the elastic stress distribution in the region in which phase transformation
has started is considered for calculating the inner boundary of pure austenite region. As we will show shortly,
this assumption can be used only for some specific loading conditions and by spread of the transformed
region this assumption becomes less and less accurate. Additionally, in Birman’s closed-form solution, for
obtaining the stress-strain relations, the transformation strains are related to the martensitic volume fraction by
constant multipliers. Although this assumption remarkably simplifies the solution, it can be replaced by a more
realistic formulation that will be presented in this paper. One of the main challenges in obtaining closed-form
solutions for structures made of phase transforming materials is introducing an accurate solution for the regions
that are completely transformed to martensite. Although the response of the structure is elastic for the fully
martensite regions, it is necessary to consider the history of loading and the final values of transformation
strain components to obtain the solution in these regions. In the present semi-analytic analysis, we will explain
how to obtain the solution for these regions.

In a recent attempt, Mirzaeifar et al. [23] developed an exact solution for pure torsion of shape memory
alloy circular bars. A general three-dimensional constitutive relation for shape memory alloys was first reduced
to an appropriate one-dimensional form suitable for pure torsion. An explicit expression was derived for shear
stress as a function of geometric specifications, material constants, and shear strain that enabled the solution
to be obtained analytically. Response of circular bars in torsion was then analyzed by considering different
possibilities that may happen in various loading levels.

Among various shapes in which SMAs are used, cylindrical shells are of particular interest in applications
including spinal vertebrae spacers [21], special cardiovascular stents [14], and active catheters [18], which are
in the form of thin shells. Li and Sun [19] studied the superelastic response of nano-grained SMA microtubes
under uniaxial tension. Their experimental results show that the nucleated macroscopic martensite band in a
microtube under uniaxial loading takes the shape of a spiral that surrounds the tube axis for several circles.
Feng and Sun [8] studied the response of SMA microtubes subjected to a combined tensile and torsional
loading experimentally. He and Sun [11] studied the effect of tube geometry on the helix-shaped deformation
domains that are observed in SMA tubes during the stress-induced martensitic phase transformation of the
material under uniaxial stretching.
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In this paper, SMA thick-walled cylinders are considered. Two extreme cases of long and short cylinders
can be reduced to plane strain and plane stress, respectively. SMA short cylinders or rings have many engi-
neering applications, e.g. the SMA pipe couplings [5,12], tube wall joints [35], and active stiffener strips [13].
Shape memory alloys have suitable mechanical characteristics that make them desirable in pressure vessels
and pipes as active layers, which are in the form of long thick cylinders [26,27].

In the present study, SMA short and long thick-walled cylinders are considered. For short cylinders in the
form of a ring or stiffener strip, in the absence of axial forces, plane stress condition is a good approximation.
Long cylinders can be reduced to a plane strain problem. Using these assumptions, the three-dimensional prob-
lem is reduced to a two-dimensional one. Constitutive equations are reduced to appropriate two-dimensional
relations, and an explicit expression is obtained for the martensitic volume fraction and transformation strains
in both cases. The cylinder is partitioned into a finite number of annular regions, and simplifying assumptions
are made in each annular region in order to obtain an explicit expression for the stress components as functions
of displacements. These stress-displacement expressions are then used to write the equilibrium equations in
terms of radial displacements in each annular region. The global solution for the cylinder is finally obtained by
putting the solutions of annular regions together and by enforcing the continuity conditions at the interfaces
and at the inner and outer boundary regions. Our semi-analytic approach can be used to validate numerical
methods like the finite element method.

This paper is organized as follows. In Sect. 2 a general three-dimensional constitutive equation for poly-
crystalline SMAs is briefly reviewed. Three dimensional constitutive relations are reduced to plane strain and
plane stress constitutive equations in Sect. 3, and explicit expressions are given for the martensitic volume
fraction in both cases. The internal pressure corresponding to the initiation of phase transformation is also
obtained in Sect. 3. In Sect. 4, the transformation strain components in both plane stress and plane strain are
presented. The semi-analytic solution for the case in which the inner radius is not completely transformed to
martensite is given in Sect. 5, and the same solution for cylinders with completed phase transformation at the
inner radius is given in Sect. 6. A step-by-step solution procedure is described in Sect. 7. Section 8 presents
some numerical examples demonstrating the efficiency of the semi-analytic solution and a comparison with
the results of three dimensional finite element simulations. Conclusions are given in Sect. 9. In the appendix, a
sensitivity analysis is presented for calculating the appropriate number of annular regions and loading steps in
the semi-analytic solution and the number of elements and load increments in the finite element simulations.

2 A three-dimensional constitutive model

We use Boyd and Lagoudas [4] and Qidwai and Lagoudas [31]’s three-dimensional phenomenological mac-
roscopic constitutive model for polycrystalline SMAs. In this constitutive model, one starts with the following
expression for the total Gibbs free energy G:

G(σ , T, εt , ξ) = − 1

2ρ
σ : SSS : σ − 1

ρ
σ : [α (T − T0) + εt]

+c

[
(T − T0) − T ln

(
T

T0

) ]
− s0T + u0 + f (ξ), (1)

where, SSS, α, c, ρ, s0 and u0 are the effective compliance tensor, effective thermal expansion coefficient tensor,
effective specific heat, mass density, effective specific entropy, and effective specific internal energy at the
reference state, respectively. The symbols σ , T, T0, εt and ξ represent the Cauchy stress tensor, temperature,
reference temperature, transformation strain, and martensite volume fraction, respectively. All the effective
material properties are assumed to vary with the martensitic volume fraction (ξ ) as follows:

SSS = SSSA + ξ�SSS, α = αA + ξ�α, c = cA + ξ�c, s0 = s A
0 + ξ�s, u0 = u A

0 + ξ�u0. (2)

The symbol �(.) denotes the difference of a quality (.) between the martensitic and austenitic phases, i.e.
�(.) = (.)M − (.)A, where the superscripts A and M represent the austenite and martensite phases, respec-
tively. In (1), f (ξ) is a hardening function that models the transformation strain hardening in the SMA material.
In the Boyd–Lagoudas’ polynomial hardening model, this function is given by

f (ξ) =
⎧
⎨

⎩

1
2ρbMξ2 + (μ1 + μ2) ξ, ξ̇ > 0,

1
2ρbAξ2 + (μ1 − μ2) ξ, ξ̇ < 0,

(3)
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where, ρbA, ρbM , μ1 and μ2 are material constants for transformation strain hardening. The first condition
in (3) represents the forward phase transformation (A → M), and the second condition represents the reverse
phase transformation (M → A). The constitutive relation of a shape memory material can be obtained by
using the total Gibbs free energy as

ε = −ρ
∂G

∂σ
= SSS : σ + α (T − T0) + εt . (4)

Considering the fact that any change in the state of the system is only possible by a change in the internal
state variable ξ , the evolution of the transformation strain tensor is related to the evolution of the martensitic
volume fraction as [2]

ε̇t = �ξ̇ , (5)

where � represents a transformation tensor related to the deviatoric stress and determines the flow direction as

� =
⎧
⎨

⎩

3
2 H σ ′

σ
, ξ̇ > 0,

H εtr

εtr , ξ̇ < 0.

(6)

In (6), H is the maximum uniaxial transformation strain and εtr represents the value of transformation strain at
the reverse phase transformation. The terms σ ′, σ and εtr are the deviatoric stress tensor, the second deviatoric
stress invariant, and the second deviatoric transformation strain invariant, respectively, and are expressed as

σ ′ = σ − 1

3
(tr σ )I, σ =

√
3

2
σ ′ : σ ′, εtr =

√
2

3
εtr : εtr , (7)

where I is the identity tensor.
An additional constraint on the material behavior is obtained by using the Second Law of Thermodynamics

in the form of non-negativeness of the rate of entropy production density [31]:

σ : ε̇t − ρ
∂G

∂ξ
ξ̇ = πξ̇ ≥ 0, (8)

where π is a thermodynamic force and can be obtained by substituting (1) and (5) into (8) as

π = σ : � + 1

2
σ : �SSS : σ + �α : σ (T − T0 )

−ρ�c

[
(T − T0) − T ln

(
T

T0

) ]
+ ρ�s0T − ∂ f

∂ξ
− ρ�u0. (9)

Now, the transformation function that controls the onset of direct and reverse phase transformations is defined
as

	 =
{

π − Y, ξ̇ > 0,

−π − Y, ξ̇ < 0,
(10)

where Y is a measure of internal dissipation due to microstructural changes during phase transformation.

3 Martensitic volume fraction for plane strain and plane stress conditions

A thick-walled SMA cylinder subjected to uniform internal pressure p is considered (see Fig. 1). For a relatively
short cylinder with open ends and in the absence of axial loads, plane stress is a good approximation. For long
cylinders, cross sections far from the ends are in a plane strain condition. In both cases, the three-dimensional
constitutive relations presented in the previous section can be reduced to two-dimensional constitutive equa-
tions.

The only non-zero stress components for the axisymmetric plane stress case are σr and σθ . In this case,
the trace of stress tensor is trσ = σr + σθ . In the plane strain case, the stress component along the axis of the
cylinder is denoted by σz , and trace of the stress tensor is trσ = σr + σθ + σz . It is worth mentioning that in
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Fig. 1 Cross section of a thick-walled SMA cylinder subjected to uniform internal pressure

contrast with the classical elasticity problems, the out of plane component of stress cannot be expressed by
σz = ν(σr + σθ ) due to the transformation strain terms. However, for any value of σr and σθ , by enforcing the
plane strain condition εz = 0, σz can be calculated. We will present a brief discussion on calculating σz for
SMAs in plane strain in the sequel. In these special cases (plane stress and plane strain), the deviatoric stress
tensor in (7)1 can be rewritten as

eσ
′ = 1

3

⎡

⎣
2σr − σθ − σz 0 0
0 2σθ − σr − σz 0
0 0 2σz − σr − σθ

⎤

⎦ ,

sσ
′ = 1

3

⎡

⎣
2σr − σθ 0 0
0 2σθ − σr 0
0 0 −σr − σθ

⎤

⎦ , (11)

where the left superscripts e(.) and s(.) represent a parameter in plane strain and plane stress, respectively. This
notation will be used throughout the paper. Substituting (11) into (6)1, the transformation tensor for the forward
phase transformation can be obtained. By substituting the transformation tensor into (9), the thermodynamic
forces for the plane strain and plane stress conditions are obtained as follows:

eπ = H eσeff + 1

2
�S11

eσ ∗
eff + ℵ and sπ = H sσeff + 1

2
�S11

sσ ∗
eff + ℵ, (12)

where

eσeff = (σ 2
r + σ 2

θ + σ 2
z − σrσθ − σrσz − σθσz)

1/2,

sσeff = (σ 2
r + σ 2

θ − σrσθ )
1/2,

eσ ∗
eff = [σ 2

r + σ 2
θ + σ 2

z − 2ν(σrσθ + σrσz + σθσz)
]
,

sσ ∗
eff = (σ 2

r + σ 2
θ − 2νσrσθ ),

ℵ = (�α11σr + �α22σθ )(T − T0) − ρ �c [(T − T0) − T ln (T/T0)]

+ρ �s0T − ρbMξ − (μ1 + μ2) − ρ �u0,

�S11 = 1

E M
− 1

E A
. (13)

The parameters E M and E A represent the elastic moduli for the martensite and austenite phases, respectively,
and ν is the Poisson’s ratio, which is assumed to be the same for both phases. Now, (10) and (12) are used in
obtaining an explicit expression for the martensitic volume fraction ξ . During the forward phase transformation
from austenite to martensite (ξ̇ > 0), the state of stress, temperature and martensitic volume fraction should
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remain on the transformation surface characterized by 	 = π −Y = 0. By substituting (12) into this condition
and using the following relations between the constitutive model parameters:

ρ�u0 + μ1 = 1

2
ρ�s0(Ms + A f ), ρbA = −ρ�s0(A f − As),

ρbM = −ρ�s0(Ms − M f ), Y = −1

2
ρ�s0(A f − Ms) − μ2, (14)

μ2 = 1

4

(
ρbA − ρbM

)
,

an explicit expression is obtained for the martensitic volume fraction in plane strain and plain stress states as:

eξ = 1

ρbM

[
H eσeff + 1

2
�S11

eσ ∗
eff + f (T )+ 

T

]
, (15)

sξ = 1

ρbM

[
H sσeff + 1

2
�S11

sσ ∗
eff + f (T )+ 

T

]
, (16)

where

f (T ) = (�α11σr + �α22σθ )(T − T0) − ρ �c [(T − T0) − T ln (T/T0)] ,


T = ρ �s0(T − Ms). (17)

Transformation surface in the stress-temperature space is represented by two separate faces related to
ξ = 0 and ξ = 1. To obtain the transformation surface in the plane strain case, for each value of the radial
and circumferential stresses, the plane strain condition in the reference temperature T = T0 is given by the
following algebraic equation (see the constitutive relation in (4))

εz = Deq(σr − νσθ − νσz) + 1

2

H
eσeff

(2σz − σr − σθ )
eξ = 0, (18)

where (H/2eσeff)(2σz −σr −σθ )
eξ is the out of plane transformation strain εt

z (calculating the transformation
strain components will be explained in more detail in Sect. 4). The martensitic volume fraction is expressed
in (15), and the effective compliance component Deq is

Deq = 1

E A + eξ(E M − E A)
. (19)

In the plane strain case, for any known (σr , σθ ) stress state, (18) is an algebraic equation with σz as the only
unknown. For finding the transformation function, for each value of the circumferential and radial stresses,
(18) is solved numerically [9], and σz is calculated. Having the stress components, (15) and (16) are used to
obtain the transformation functions in both plane stress and plane strain cases. At a given temperature, the
transformation functions ξ = 0 and ξ = 1 are represented by curves in (σr , σθ ) stress space. Figure 2 shows
the transformation function in the start and finish of phase transformation for both the plane stress and plane
strain conditions (material properties of Table 1 are used in plotting these curves). For any state of stress
inside the ξ = 0 region, the material is in the fully austenite phase. The stress points outside ξ = 1 represent
a fully martensite case, and any stress state between these two surfaces represents the material with phase
transformation 0 < ξ < 1.

As it is shown in Fig. 2, in the plane strain case, the ξ = 1 curve is stretched along the σr = σθ line. For
studying this phenomenon, the out of plane stress obtained from solving the plane strain condition in (18) for
any (σr , σθ ) stress sate is plotted in Fig. 3. As it is shown in this figure, for any (σr , σθ ) stress state inside the
ξ = 0 curve (see Fig. 2), the value of σz is identical with the elastic case (σz = ν(σr −σθ )). Between the ξ = 0
and ξ = 1 curves, σz varies non-linearly and is obtained from solving (18), and for any state of stress outside
the ξ = 1 curve, the value of σz is not unique and depends on the loading path1. By increase in stresses on
the σr = σθ path, the solution of (18) approaches σz = σr = σθ , i.e. the hydrostatic stress state. Note that the
presented constitutive relations are based on J2 plasticity, and the transformation function is an open surface
along the hydrostatic pressure in this case [31]. That is the reason of having an open curve in Fig. 2 for the
plane strain case.

1 For calculating σz outside the ξ = 1 curve, the plane strain condition εz = 1
EM

(σr − νσθ − νσz) + ε̃t
z = 0 is solved in which

ε̃t
z is the final value of axial transformation strain during loading at the point that phase transformation has been completed. We

will discuss this case in more detail in Sect. 6.
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Fig. 2 Transformation function in σr − σθ space at T = 315K for both plane stress and plane strain cases

Table 1 SMA material parameters

Material constants A generic SMA [32]

E A 70.0 × 109Pa
E M 30.0 × 109Pa
ν A = νM 0.3
αA 22.0 × 10−6/K
αM 10.0 × 10−6/K
ρ�c = cM − cA 0.0 J/(m3K)
H 0.05
ρ�s0 −0.35 × 106J/(m3K)
A f 315.0 K
As 295.0 K
Ms 291.0 K
M f 271.0 K
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Fig. 3 σz in plane strain as a function of σr and σθ

The elastic radial and hoop stress distributions for a thick-walled cylinder in plane stress or plane strain
(see Fig. 1) can be expressed as [3]:

σr = pa2(r2 − b2)

r2(b2 − a2)
and σθ = pa2(r2 + b2)

r2(b2 − a2)
. (20)

The axial stress component in plane strain for an elastic cylinder is expressed as σz = ν(σr − σθ ). Consid-
ering (15), (16), (20), and using the dimensionless quantities R = r /a and β = b

/
a, the following expressions
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are obtained for the martensitic volume fraction in plane strain and plane stress as functions of internal pressure
(using �c = �α11 = �α22 = 0):

eξ = H

ρbM

p

R2(β2 − 1)

√
4 ν2 R4 − 4 ν R4 + 3 β4 + R4

+�S11

ρbM

p2

R4(1 − β2)2

(
β4 + R4 − 2 ν2 R4 + νβ4 − νR4)+



T
ρbM

, (21)

sξ = H

ρbM

p

R2(β2 − 1)

√
3β4 + R4

+�S11

ρbM

p2

R4(1 − β2)2

(
β4 + R4 + νβ4 − νR4)+



T
ρbM

. (22)

In deriving (21) and (22), the elastic stress distribution is considered for the cylinder, so this relation represents
an exact expression only for the phase transformation innermost radius at the initiation of phase transformation,
which is characterized by ξ = 0. Solving (21) and (22) for the parameter p by setting ξ = 0 gives:

ep = R2
0(β2 − 1)

2 �S11(β4 + R4
0 − 2 ν2 R4

0 + νβ4 − νR4
0)

(
−H

√
4 ν2 R4

0 − 4 ν R4
0 + 3 β4 + R4

0

+
[

H2(4 ν2 R4
0 − 4 ν R4

0 + 3 β4 + R4
0) − 4



T �S11(β
4 + R4

0 − 2 ν2 R4
0 + νβ4 − νR4

0)
] 1

2

)

, (23)

sp = R2
0(β2 − 1)

2 �S11(β4 + R4
0 + νβ4 − νR4

0)

(
−H

√
3β4 + R4

0

+
√

3H2β4 + H2 R4
0 − 4



T �S11(β4 + R4
0 + νβ4 − νR4

0)

)
. (24)

Since (21) and (22) are solved for ξ = 0, we denote the parameter R in this special case by R0 = r0/a, where
r0 is the inner radius of the region in which the phase transformation has not started (ξ = 0). Equations (23)
and (24) can be used for exact prediction of phase transformation initiation that starts from the inner radius
(R0 = 1). Note that in the phase transformation initiation, the whole cylinder is in the austenite phase and
the elastic stress distribution in (20) is valid, so (23) and (24) present the exact solution in this case. Figure 4
shows this pressure for different values of β and for three different temperatures in both plane stress and plane
strain.

As the elastic stress distribution is assumed in deriving (21)–(24), by spread of the regions with phase
transformation toward the outer radius, the precision of these relations is reduced as stress distribution in areas
with phase transformation is different from the elastic stress distribution. Using (21) and (22), Fig. 5 shows an
approximate solution for the spread of phase transformation boundary (R0) as the pressure increases for three
different values of temperature. These results are obtained for a thick-walled cylinder with β = 3 in both plane
stress and plane strain. The results of Fig. 5 are exact for R0 = 1 since the phase transformation boundary is at
the inner radius in this case and the whole cylinder is in the fully austenite phase with elastic stress distribution.
However, when the phase transformation boundary is spread through the outer radius (R0 > 1), the elastic
stress distribution is not valid in a portion of the thickness and the results of Fig. 5 are approximate. The exact
value for R0 for different internal pressures will be given in the sequel.

4 Transformation strains and their derivatives with respect to stress components

In this section, the two-dimensional form of the constitutive relations is expressed for material points with
0 < ξ < 1. Substituting the transformation tensor into (5) and after integration, the following expressions are
obtained for the transformation strain components in plane stress and plane strain:

eεt
r = 1

2

H
eσeff

(2σr − σθ − σz) ξ, eεt
θ = 1

2

H
eσeff

(2σθ − σr − σz) ξ, eεt
z = 1

2

H
eσeff

(2σz − σr − σθ ) ξ,

(25)
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Fig. 5 An approximate value for the spread of phase transformation boundary in SMA thick-walled cylinders in both plane stress
(PS) and plane strain (PE)

and

sεt
r = 1

2

H
sσeff

(2σr − σθ )ξ, sεt
θ = 1

2

H
sσeff

(2σθ − σr )ξ, (26)

with the effective stresses expressed in (13). Using �c = �α11 = �α22 = 0, substituting (15) into (25) leads
to the following expression for the transformation strain components for the plane stress case:

sεt
r = sF (2σr − σθ ),

sεt
θ = sF (2σθ − σr ), (27)

and the transformation strain components in the plane strain case are obtained by substituting (16) into
(26) as:

eεt
r = eF (2σr − σθ − σz),

eεt
θ = eF (2σθ − σr − σz),

eεt
z = eF (2σz − σr − σθ ), (28)
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where

sF =
(

H2

2ρbM
+ H�S11

4ρbM

sσ ∗
eff

sσeff
+ H



T
2ρbM

1
sσeff

)

, eF =
(

H2

2ρbM
+ H�S11

4ρbM

eσ ∗
eff

eσeff
+ H



T
2ρbM

1
eσeff

)

. (29)

Differentials of transformation strains in (27) and (28), after some lengthy algebraic manipulations, can be
written as

d(eεt
r ) = 1

2ρbM

{[

2H2 + H eG + 2
H



T
eσeff

+
(

1

2
H eA − H



T eM
(eσeff)2

)

(2σr − σθ − σz)

]

dσr

+
[

−H2 − 1

2
H eG − H



T
eσeff

+
(

1

2
H eB − H



T eN
(eσeff)2

)

(2σr − σθ − σz)

]

dσθ

+
[

−H2 − 1

2
H eG − H



T
eσeff

+
(

1

2
H eC − H



T eO
(eσeff)2

)

(2σr − σθ − σz)

]

dσz

}

, (30)

d(eεt
θ ) = 1

2ρbM

{[

−H2 − 1

2
H eG − H



T
eσeff

+
(

1

2
H eA − H



T eM
(eσeff)2

)

(2σθ − σr − σz)

]

dσr

+
[

2H2 + H eG + 2
H



T
eσeff

+
(

1

2
H eB − H



T eN
(eσeff)2

)

(2σθ − σr − σz)

]

dσθ

+
[

−H2 − 1

2
H eG − H



T
eσeff

+
(

1

2
H eC − H



T eO
(eσeff)2

)

(2σθ − σr − σz)

]

dσz

}

, (31)

d(eεt
z) = 1

2ρbM

{[

−H2 − 1

2
H eG − H



T
eσeff

+
(

1

2
H eA − H



T eM
(eσeff)2

)

(2σz − σr − σθ )

]

dσr

+
[

−H2 − 1

2
H eG − H



T
eσeff

+
(

1

2
H eB − H



T eN
(eσeff)2

)

(2σz − σr − σθ )

]

dσθ

+
[

2H2 + H eG + 2
H



T
eσeff

+
(

1

2
H eC − H



T eO
(eσeff)2

)

(2σz − σr − σθ )

]

dσz

}

, (32)

for plane strain and

d(sεt
r ) = 1

2ρbM

{[

2H2 + H sG + 2
H



T
sσeff

+
(

1

2
H sA − H



T sM
(sσeff)2

)

(2σr − σθ )

]

dσr

+
[

−H2 − 1

2
H sG − H



T
sσeff

+
(

1

2
H sB − H



T sN
(sσeff)2

)

(2σr − σθ )

]

dσθ

}

, (33)

d(sεt
θ ) = 1

2ρbM

{[

−H2 − 1

2
H sG − H



T
sσeff

+
(

1

2
H sA − H



T sM
(sσeff)2

)

(2σθ − σr )

]

dσr

+
[

2H2 + H sG + 2
H



T
sσeff

+
(

1

2
H sB − H



T sN
(sσeff)2

)

(2σθ − σr )

]

dσθ

}

, (34)
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for plane stress, where

eM = 2σr − σθ − σz

2 eσeff
,eN = 2σθ − σr − σz

2 eσeff
, eO = 2σz − σr − σθ

2 eσeff
,

eA = �S11

(eσeff)2

[eσeff (2σr − 2νσθ − 2νσz) −eM eσ ∗
eff

]
,

eB = �S11

(eσeff)2

[eσeff (2σθ − 2νσr − 2νσz) −eN eσ ∗
eff

]
,

eC = �S11

(eσeff)2

[eσeff (2σz − 2νσr − 2νσθ ) −eO eσ ∗
eff

]
,

sM = 2σr − σθ

2 sσeff
, sN = 2σθ − σr

2 sσeff
,

sA = �S11

(sσeff)2

[sσeff (2σr − 2νσθ ) −s M sσ ∗
eff

]
, sB = �S11

(sσeff)2

[sσeff (2σθ − 2νσr ) −s N sσ ∗
eff

]
,

eG = �S11

eσ ∗
eff

eσeff
, sG = �S11

sσ ∗
eff

sσeff
. (35)

On the other hand by considering the fact that the transformation strains (in both plane stress and plane strain)
are functions of material constants and the stress components, their differentials can be expressed as

d(eεt
r ) = ∂(eεt

r )

∂σr
dσr + ∂(eεt

r )

∂σθ

dσθ + ∂(eεt
r )

∂σz
dσz, d(eεt

θ ) = ∂(eεt
θ )

∂σr
dσr + ∂(eεt

θ )

∂σθ

dσθ + ∂(eεt
θ )

∂σz
dσz,

d(eεt
z) = ∂(eεt

z)

∂σr
dσr + ∂(eεt

z)

∂σθ

dσθ + ∂(eεt
z)

∂σz
dσz, (36)

and

d(sεt
r ) = ∂(sεt

r )

∂σr
dσr + ∂(sεt

r )

∂σθ

dσθ , d(sεt
θ ) = ∂(sεt

θ )

∂σr
dσr + ∂(sεt

θ )

∂σθ

dσθ . (37)

Now, comparing (30)–(32) with (36) and (33)–(34) with (37) term by term, the derivatives of transformation
strain components with respect to stress components can be obtained. Note that the expressions in (27) and
(28) are valid only in regions that contain both austenite and martensite (0 < ξ < 1). In the following sections,
the constitutive equations are linearized using the calculated derivatives of transformation strain components.
The closed-form solutions are considered for two different cases. We will present the linearized constitutive
equations for the regions with partial phase transformation (0 < ξ < 1) in Sect. 5. The constitutive equation of
Sect. 5 is applicable for the whole cylinder when the material in the inner radius is not completely transformed
to martensite. The linearized constitutive relations for regions fully transformed to martensite (ξ = 1) are
given in Sect. 6. When the martensitic volume fraction reaches the value ξ = 1 at the inner radius, increase in
pressure will cause the extension of martensite region toward the outer radius and the constitutive relations of
Sect. 6 should be considered in analyzing regions that are fully transferred to martensite.

5 Semi-analytic solutions when the inner radius is not completely transformed to martensite

As was shown in Sect. 3, for a thick-walled cylinder subjected to internal pressure, the phase transformation
initiates from the inner radius and spreads toward the outer radius for both plane stress and plane strain. So, it
can be concluded that when the inner radius is not completely converted to martensite, throughout the thick-
ness, the transformation strains can be expressed by (27) and (28) for the regions in which 0 < ξ < 1 and they
would be zero in the regions in which phase transformation has not started yet.

The solution in this case is obtained by splitting the applied pressure into a finite number of increments.
By assuming that the solution is known in the nth increment2 and by considering the derivatives of the trans-
formation strain with respect to the stress components, linearized constitutive relations are used for finding

2 Zero internal pressure can be considered for the first increment. However, it is more efficient to consider a pressure for which
the whole cylinder is in the austenite phase as the first increment. The value of the pressure that causes phase transformation to
start was calculated in (23) and (24).
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ith annular region 

ri

Fig. 6 Partitioning the cylinder’s cross section into a finite number of narrow annular regions

the solution in the (n+1)th increment. The transformation strains in the ith annular region for the (n+1)th
increment of loading can be expressed as:

n+1 (eεt
r

)i =
n(

∂ eεt
r

∂σr

)i (
n+1σ i

r − nσ i
r

)
+

n(
∂ eεt

r

∂σθ

)i (
n+1σ i

θ − nσ i
θ

)
+

n(
∂ eεt

r

∂σz

)i (
n+1σ i

z − nσ i
z

)
+n (eεt

r )
i ,

(38)

n+1(eεt
θ )

i =
n(

∂ eεt
θ

∂σr

)i (
n+1σ i

r − nσ i
r

)
+

n(
∂ eεt

θ

∂σθ

)i (
n+1σ i

θ − nσ i
θ

)
+

n(
∂ eεt

θ

∂σz

)i (
n+1σ i

z − nσ i
z

)
+n (eεt

θ )
i ,

(39)

n+1(eεt
z)

i =
n(

∂ eεt
z

∂σr

)i (
n+1σ i

r − nσ i
r

)
+

n(
∂ eεt

z

∂σθ

)i (
n+1σ i

θ − nσ i
θ

)
+

n(
∂ eεt

z

∂σz

)i (
n+1σ i

z − nσ i
z

)
+n (eεt

z)
i ,

(40)

for plane strain and

n+1(sεt
r )

i =
n(

∂ sεt
r

∂σr

)i (
n+1σ i

r − nσ i
r

)
+

n(
∂ sεt

r

∂σθ

)i (
n+1σ i

θ − nσ i
θ

)
+n (sεt

r )
i , (41)

n+1(sεt
θ )

i =
n(

∂ sεt
θ

∂σr

)i (
n+1σ i

r − nσ i
r

)
+

n(
∂ sεt

θ

∂σθ

)i (
n+1σ i

θ − nσ i
θ

)
+n (sεt

θ )
i , (42)

for plane stress. In deriving (38)–(42), continuous functions of transformation strain derivatives are replaced
by piece-wise constant functions. The cylinder is divided into a finite number of narrow annular regions as
shown in Fig. 6. The transformation strain derivatives are assumed constant in each region. Increasing the
number of annular regions, the accuracy of this method increases.

By applying the load incrementally, the stress components, transformation strain components, and the
transformation strain derivatives are known in the nth increment. We start from a load value for which the
whole cylinder is in the austenite phase. In this case, the stress components for the first increment are calcu-
lated from the elastic solution. Increasing the internal pressure incrementally, the start of phase transformation
is checked in each annular region by calculating the martensitic volume fraction using (15) and (16). For
each annular region, the phase transformation starts at a specific load increment. For this special increment,
Eqs. (38)–(42) should be considered with a minor modification. Figure 7 shows the circumferential transfor-
mation strain surface in the stress space for plane stress. At the start of phase transformation in an annular
region, the (n+1)th stress state corresponds to a generic point B that lies between ξ = 0 and ξ = 1 curves
(see Fig. 2 and note that a part of these curves is shown in Fig. 7), while the stress state in the nth increment
lies inside the ξ = 0 curve (point A in Fig. 7). For this increment, neither the elastic solution nor the solution
presented in (41) and (42) can be used as in deriving these equations it is assumed that the stress state in the
nth increment corresponds to a point on the transformation strain surface located between ξ = 0 and ξ = 1
curves. However, these relations can be used for this special increment with the following minor modification.
The loading path between the stress states A and B is assumed linear as shown in Fig. 7. The intersection of
this line with ξ = 0 curve is found numerically (point k in Fig. 7), and the stress components corresponding to



A semi-analytic analysis of shape memory alloy thick-walled cylinders under internal pressure 1105

-300 -250 -200 -150 -100 -50 0 50
0

100

200

300
-0.1

-0.05

0

0.05

0.1

0.15

σθ (MPa)

σr (MPa)

s ε
θt

A
B

ξ=0C
D k∗ξ=1

k

sεθ
t =0sεθ

t~ in k∗

ξ=1

ξ=

Fig. 7 Method of calculating the circumferential transformation strain for the special increments in which phase transformation
starts and completes in the plane stress case

this point are used instead of nσ i
r and nσ i

θ in (41) and (42). It is obvious that the parameters n(sεt
r )

i and n(sεt
θ )

i

are zero for this increment since ξ = 0 at k (see (25) and (26)). In the plane strain case, the same procedure is
used for finding the circumferential and radial stress components at the onset of phase transformation in each
region. The axial stress component is calculated by nσ i

z = ν(nσ i
r +n σ i

θ ) (see the plane strain condition in (18)
with eξ = 0).

The total strain components for the ith annular region at the (n+1)th load increment can be expressed as:

n+1(eεr )
i = nSi

11
n+1σ i

r +nSi
12

n+1σ i
θ +nSi

13
n+1σ i

z +ndi
1,

n+1(eεθ )
i = nSi

21
n+1σ i

r +nSi
22

n+1σ i
θ +nSi

23
n+1σ i

z +ndi
2, (43)

0 = nSi
31

n+1σ i
r +nSi

32
n+1σ i

θ +nSi
33

n+1σ i
z +ndi

3,

in plane strain and

n+1(sεr )
i =nSi

11
n+1σ i

r +nSi
12

n+1σ i
θ +ndi

1,
n+1(sεθ )

i =nSi
21

n+1σ i
r +nSi

22
n+1σ i

θ +ndi
2, (44)

in plane stress. The parameters S and d in (43) for the plane strain are expressed as

nSi
11 = nDi

eq +
n(

∂ eεt
r

∂σr

)i

, nSi
12 = −ν nDi

eq +
n(

∂ eεt
r

∂σθ

)i

, nSi
13 = −ν nDi

eq +
n(

∂ eεt
r

∂σz

)i

,

nSi
21 = −ν nDi

eq +
n(

∂ eεt
θ

∂σr

)i

, nSi
22 = nDi

eq +
n(

∂ eεt
θ

∂σθ

)i

, nSi
23 = −ν nDi

eq +
n(

∂ eεt
θ

∂σz

)i

,

nSi
31 = −ν nDi

eq +
n(

∂ eεt
z

∂σr

)i

, nSi
32 = −ν nDi

eq +
n(

∂ eεt
z

∂σθ

)i

, nSi
33 = nDi

eq +
n(

∂ eεt
z

∂σz

)i

,

ndi
1 = −

n(
∂ eεt

r

∂σr

)i
nσ i

r −
n(

∂ eεt
r

∂σθ

)i
nσ i

θ −
n(

∂ eεt
r

∂σz

)i
nσ i

z +n (eεt
r )

i ,

ndi
2 = −

n(
∂ eεt

θ

∂σr

)i
nσ i

r −
n(

∂ eεt
θ

∂σθ

)i
nσ i

θ −
n(

∂ eεt
θ

∂σz

)i
nσ i

z +n (eεt
θ )

i ,

ndi
3 = −

n(
∂ eεt

z

∂σr

)i
nσ i

r −
n(

∂ eεt
z

∂σθ

)i
nσ i

θ −
n(

∂ eεt
z

∂σz

)i
nσ i

z +n (eεt
z)

i ,

nDi
eq = 1

E A + nξ i (E M − E A)
.

(45)
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For the plane stress case in (44), these parameters should be replaced by

nSi
11 = nDi

eq +
n(

∂ sεt
r

∂σr

)i

, nSi
12 = −ν nDi

eq +
n(

∂ sεt
r

∂σθ

)i

,

nSi
21 = −ν nDi

eq +
n(

∂ sεt
θ

∂σr

)i

, nSi
22 = nDi

eq +
n(

∂ sεt
θ

∂σθ

)i

, (46)

ndi
1 = −

n(
∂ sεt

r

∂σr

)i
nσ i

r −
n(

∂ sεt
r

∂σθ

)i
nσ i

θ +n (sεt
r )

i , ndi
2 = −

n(
∂ sεt

θ

∂σr

)i
nσ i

r −
n(

∂ sεt
θ

∂σθ

)i
nσ i

θ +n (sεt
θ )

i .

All the coefficients in (45) and (46) are assumed to be known in the nth loading increment. Also, all the
coefficients are considered constant within each narrow region. By inverting (43) and (44), the stress-strain
relations are obtained for the ith region at the (n + 1)th load increment as follows

n+1σ i
r =n Ci

11
n+1(εr )

i +n Ci
12

n+1(εθ )
i +n ei

1 and n+1σ i
θ =n Ci

21
n+1(εr )

i +n Ci
22

n+1(εθ )
i +n ei

2. (47)

Equation (47) is applicable in both plane strain and plane stress cases. For plane strain, the parameters εr and
εθ are replaced by eεr and eεθ , and the coefficients Cmn, m, n = 1, 2, 3 are the components of the inverse of
matrix S, a 3 × 3 matrix with components given in (45). The parameters em, m = 1, 2 in the plane strain case
are expressed by

nei
1 = −nCi

11
ndi

1 −n Ci
12

ndi
2 −n Ci

13
ndi

3 and nei
2 = −nCi

21
ndi

1 −n Ci
22

ndi
2 −n Ci

23
ndi

3, (48)

with the parameters dm, m = 1, 2, 3 given in (45). For plane stress, the parameters εr and εθ in (47) are
replaced by sεr and sεθ , respectively. The coefficients Cmn, m, n = 1, 2 are the components of the inverse of
matrix S, a 2 × 2 matrix with components introduced in (46). The parameters em, m = 1, 2 in plane stress are
given by

nei
1 = −nCi

11
ndi

1 −n Ci
12

ndi
2 and nei

2 = −nCi
21

ndi
1 −n Ci

22
ndi

2, (49)

where dm, m = 1, 2 are given in (46).
In the absence of body forces, the equations of equilibrium for an axisymmetric problem in cylindrical

coordinates are reduced to:

dσr

dr
+ σr − σθ

r
= 0. (50)

Note that εr = ∂u
∂r and εθ = u

r , where u represents the radial displacement. Substituting (47) into (50) and
considering the strain-displacement relations, the equilibrium equation in terms of radial displacement is
obtained as:

d2(n+1ui )

dr2 + 1

r

d(n+1ui )

dr
− n f i

n+1ui

r2 + ngi 1

r
= 0, (51)

where n+1ui is the radial displacement in the (n+1)th loading increment in the ith annular region and

n f i =
nCi

22
nCi

11

, ngi =
nei

1 − nei
2

nCi
11

. (52)

Considering constant values for the above parameters in each annular region, a closed-form solution can be
obtained for (51) as:

n+1ui (r) =

⎧
⎪⎪⎨

⎪⎪⎩

n+1 Ai
1r

√
n f i + n+1 Ai

2r−
√

n f i + n gi

n f i −1
r n f i > 0,

n+1 Ai
1 sin

(√− n f i ln r
)

+ n+1 Ai
2 cos

(√− n f i ln r
)

+ n gi

n f i −1
r n f i < 0,

(53)
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where n+1 Ai
1 and n+1 Ai

2 are integration constants that should be found in the (n+1)th increment of loading.
Substituting (53) into the strain-displacement relations and considering (47), the stress components within the
ith region are obtained. For (53)1, these components are expressed as

n+1σr = n+1Ai
1

[
r
√

n f i −1
(

nCi
11

√
n f i +n Ci

12

)]
+ n+1 Ai

2

[
r−

√
n f i −1

(
nCi

12 −n Ci
11

√
n f i

)]

+
(

nCi
11 +n Ci

12

) ngi

n f i − 1
+ nei

1, (54)

n+1σθ = n+1Ai
1

[
r
√

n f i −1
(

nCi
21

√
n f i +n Ci

22

)]
+ n+1Ai

2

[
r−

√
n f i −1

(
nCi

22 −n Ci
21

√
n f i

)]

+
(

nCi
21 +n Ci

22

) ngi

n f i − 1
+ nei

2. (55)

For (53)2 ,the same procedure is followed. The solutions expressed in (53)–(55) are used for the regions in
which the martensitic volume fraction is 0 < ξ < 1. For those regions in which phase transformation has not
started and the material is purely austenite, the above solution should be converted to the elastic solution by
eliminating the last term in (53) and the last two terms in (54) and (55).

6 Closed-form solutions when the inner radius is completely transformed to martensite

For a special value of internal pressure, the inner radius completely transforms to martensite3. For pressures
lower than this value, the solution proposed in Sect. 5 would be applicable. By increasing the pressure, the
fully martensite region will spread toward the outer radius, and the previous solution is not valid in this region.
For the ith narrow annular region in which the material is fully transformed to martensite in the (n + 1)th
increment, the strain components can be expressed as

n+1(eεr )
i = SM

11
n+1σ i

r + SM
12

n+1σ i
θ + SM

13
n+1σ i

z + (eε̃t
r )

i ,

n+1(eεθ )
i = SM

21
n+1σ i

r + SM
22

n+1σ i
θ + SM

23
n+1σ i

z + (eε̃t
θ )

i , (56)

0 = SM
31

n+1σ i
r + SM

32
n+1σ i

θ + SM
33

n+1σ i
z + (eε̃t

z)
i ,

for plane strain and

n+1(sεr )
i = SM

11
n+1σ i

r + SM
12

n+1σ i
θ + (s ε̃t

r )
i and n+1(sεθ )

i = SM
21

n+1σ i
r + SM

22
n+1σ i

θ + (s ε̃t
θ )

i , (57)

for plane stress, where

SM
mn =

{
1

E M for m = n,

− νM

E M for m �= n.
(58)

In (58), m, n = 1, 2, 3 for plane strain and m, n = 1, 2 for plane stress. The terms (eε̃t
r )

i , (eε̃t
θ )

i , and (eε̃t
z)

i

in (56) and (s ε̃t
r )

i and (s ε̃t
θ )

i in (57) represent the final transformation strain components in the ith region
for the plane stress and plane strain cases, respectively. For calculating these terms, the martensitic volume
fraction in each annular region is monitored in all the increments, and the first loading increment in which the
ith region is fully transformed to martensite is recorded. In this special increment, the stress state for the nth
loading increment corresponds to a point located between ξ = 0 and ξ = 1 curves (see Fig. 2). Point C in
Fig. 7 shows the stress state of such a point (the material properties of Table 1 and the plane stress condition
are used for depicting the circumferential strain surface). The stress state of this annular region in the (n+1)th
increment corresponds to a point outside the ξ = 1 closed curve (point D in Fig. 7). Approximating the load
path between these two points by a line, the stress state corresponding to the intersection of line C-D and ξ = 1
curve (point k∗ in Fig. 7) is calculated numerically. For the plane strain case, the stress component σz at the
corresponding point k∗ is calculated by enforcing the plane strain condition as expressed in (18). The final

3 An explicit expression can not be obtained for this pressure. In each load increment, the martensitic volume fraction in all
the annular regions is monitored to find the pressure that causes full transformation to martensite in different regions.
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transformation strain components are calculated by substituting the stress sate of this point in (25) and (26)
for the plane strain and plane stress cases, respectively (the circumferential transformation strain component
corresponding to k∗ in the plane stress is shown in Fig. 7). The accuracy of the final transformation strains
calculated by this method increases by increasing the number of load increments. We will compare the final
transformation strains calculated by our method with those of a finite element simulation in a few numerical
examples.

Using the inverses of (56) and (57), the stress-strain relations are expressed as:

n+1σr = C M
11

n+1(εr )
i + C M

12
n+1(εθ )

i + ẽi
1 and n+1σθ = C M

12
n+1(εr )

i + C M
22

n+1(εθ )
i + ẽi

2, (59)

which are applicable for both plane stress and plane strain. For considering the relation in plane strain, εr and
εθ are replaced by eεr and eεθ , respectively. The coefficients C M

mn, m, n = 1, 2, 3 are the components of the
inverse of matrix SM , a 3×3 matrix with components given in (58). The parameters ẽm, m = 1, 2 in the plane
strain case are

ẽi
1 = −C M

11(eε̃t
r )

i − C M
12(eε̃t

θ )
i − C M

13(eε̃t
z)

i and ẽi
2 = −C M

21(eε̃t
r )

i − C M
22(eε̃t

θ )
i − C M

23(eε̃t
z)

i . (60)

For the plane stress case, εr and εθ in (59) are replaced by sεr and sεθ , respectively. The coefficients C M
mn, m, n =

1, 2 are the components of the inverse of matrix SM , a 2 × 2 matrix with components introduced in (58). The
parameters ẽm, m = 1, 2 in this case are expressed by

ẽi
1 = −C M

11(s ε̃t
r )

i − C M
12(s ε̃t

θ )
i and ẽi

2 = −C M
21(s ε̃t

r )
i − C M

22(s ε̃t
θ )

i . (61)

Substituting (59) into (50) and considering the strain-displacement relations, the equilibrium equation in terms
of radial displacement in the ith region is obtained. Using assumptions similar to those in the previous section,
the radial displacement for the ith region in the (n + 1)th loading increment n+1ui , which is fully transformed
to martensite, can be expressed as:

n+1ui = n+1 Ai
1r +

n+1 Ai
2

r
− 1

2
g̃i r ln r + 1

4
g̃i r, (62)

where

g̃i = ẽi
1 − ẽi

2

C M
11

. (63)

Substitution of (62) into (59) and using the strain-displacement relations gives the stress components in the ith
fully martensite region as:

n+1σr = n+1 Ai
1

(
C M

11 + C M
12

)
+

n+1 Ai
2

r2

(
C M

12 − C M
11

)
+ C M

11(−1

2
g̃i ln r − 1

4
g̃i )

+C M
12(−1

2
g̃i ln r + 1

4
g̃i ) + ẽi

1, (64)

n+1σθ = n+1 Ai
1

(
C M

12 + C M
22

)
+

n+1 Ai
2

r2

(
C M

22 − C M
12

)
+ C M

12(−1

2
g̃i ln r − 1

4
g̃i )

+C M
22(−1

2
g̃i ln r + 1

4
g̃i ) + ẽi

2. (65)

The solution expressed in (64) and (65) is valid from the inner radius up to the annular region in which the
martensitic volume fraction is ξ < 1. For the other regions, through the outer radius, the solution given in
Sect. 5 should be used.
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7 Solution procedure

Using Eqs. (23) and (24) or Fig. 4, the pressure for initiation of phase transformation in the cylinder is calcu-
lated. For any applied pressure below this minimum, the elastic solution is valid and for pressures above this
minimum the subsequent procedure should be followed.

The cylinder is divided into N1 narrow annular regions with the ith region r i < r < r i+1 (see Fig. 6).
The loading is divided into N2 increments. The first increment corresponds to zero internal pressure or any
internal pressure for which the whole cylinder is in the austenite phase (see Fig. 4). Assuming that for the nth
loading increment the solution is known, in the (n+1)th increment the following procedure is considered. The
radial stress component in the innermost radius is assumed to be n+1σ 1

r = − n+1 p that is the internal pressure
corresponding to the (n+1)th load increment. As the circumferential stress component is unknown, a typical
value n+1σ 1

θ = σ̂ is assumed for initiating the solution procedure (e.g. σ̂ = nσ 1
θ ). In the plane strain case,

the axial stress component σz in the inner radius is calculated by enforcing the plane strain condition given in
(18). Equations (15) and (16) are used for calculating the martensitic fraction ξ at r = a. Depending on the
calculated martensitic fraction in the inner radius, two cases are possible:

Case I: 0 < ξ1 < 1. Equations (48), (49), and (52) are used for calculating the previously introduced con-
stants in the first annular region. By substituting these coefficients into (54) and (55), the unknown
constants n+1 A1

1 and n+1 A1
2 are calculated. Now, the stress components can be calculated in r2 by

means of (54), (55), and by assuming the other parameters to be constants in the first annular region.
The calculated stress components for the outer radius of the first region are considered as the stresses
in the inner radius of the second region, and the calculations are repeated. In the plane strain case, the
axial stress component in the inner radius of each region is calculated by enforcing the condition (18).
These calculations are continued up to the last region. Now, the calculated radial stress for the exter-
nal radius r = b should satisfy the boundary condition σr = 0. If this condition is not satisfied, the
assumed circumferential stress in the innermost region (σ̂ ) is corrected (e.g. by a fraction of residual
radial stress at the external boundary4) and the procedure is repeated until satisfaction of the stress
boundary condition at r = b. As it will be shown in the numerical results, the number of iterations
for achieving the consistent stress distribution is small. Note that if in any region in a < r < b the
martensitic fraction becomes zero, the solution procedure should be switched to an elastic solution
by eliminating the last term in (53) and the last two terms in (54) and (55).

Case II: ξ1 = 1. As was explained in Sect. 6, to obtain the solution in this case, for each annular region, the
special step in which that region is fully converted to martensite should be obtained (using (15) and
(16)). In this special load increment the method explained in Sect. 6 and Fig. 7 is used for calculating
the parameters (ε̃t

r )
i and (ε̃t

θ )
i . For any annular region in which the material is fully transformed to

martensite, the previous procedure of Case I should be used by replacing (48), (49), (52), (54), and
(55) by (60), (61), (63), (64), and (65), respectively. Note that, at the inner radius of each narrow
annular region, the martensitic volume fraction is calculated, and when it becomes less than 1, the
solution is switched to that of Case I.

8 Numerical results

In this section, the SMA thick-walled cylinder shown in Fig. 1 is considered with a=0.1m, b=0.3m and T=315K.
The outer radius is chosen three times the inner radius for satisfying the thick-walled condition for the cylin-
der. The cylinder is subjected to different internal pressures, and the stress distribution is calculated using the
proposed semi-analytic method in both plane stress and plane strain conditions.

First, a sensitivity analysis is performed for calculating the appropriate number of annular regions N1
and load increments N2 (see Appendix A). Based on the sensitivity analysis results, the thickness is divided
into N1 = 100 annular regions (see Fig. 6) and the load is applied in N2 = 20 increments. All the material
properties used in the following numerical examples are presented in Table 1, which are taken from [32].

For validation purposes, three dimensional constitutive relations of Sect. 2 are used, and an appropri-
ate user subroutine (UMAT) has been written by FORTRAN in the commercially available finite element
program ABAQUS that enables this code to model SMA structures using solid elements. For modeling SMA

4 For the numerical results presented in this paper, in the kth iteration k σ̂ = k−1σ̂ − 0.1(k−1σr )r=b, where the left subscripts
are used for indicating the iteration number. Using this method and by considering a tolerance of 0.1M Pa for the residual radial
stress at the outer radius, the boundary condition in the outer radius is satisfied for all the case studies in less than 10 iterations.
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Fig. 8 Distribution of a radial stress, b circumferential stress, c axial stress, and d martensitic volume fraction for an SMA
thick-walled cylinder under internal pressure in plane strain with 0 < ξ < 1 at the inner radius

thick-walled cylinders by 3D solid elements, a 15◦ sector of a short thick-walled cylinder is considered. The
axisymmetric boundary conditions are imposed by constraining the boundary nodes from moving along the
circumferential direction. For modeling the plane stress condition, both ends of the cylinder are free in moving
along the axial direction and the plane strain condition is imposed by constraining both ends in the axial
direction. The developed finite element code is validated by comparing with the previously reported works for
SMA structures, e.g. uniaxial tension, bending of beams, and deflection analysis of cylindrical panels [22].
Quadratic (20 node cubic) elements are used. One element is considered along the circumferential and axial
directions and the thickness is divided into 30 elements. The pressure loading is divided into 100 steps and the
tolerance of 1 × 10−6 is considered for the convergence of transformation function (see [22]). A sensitivity
analysis is presented in Appendix A for studying the effect of changing the number of elements and load
increments on the finite element simulation results.

Three different values of internal pressure are considered for the first case in Sect. 7. Figure 8a shows the
radial stress distribution for the internal pressures p = 120, 160, and 200 MPa in plane strain. In all the cases,
the stress boundary condition in the external radius is satisfied with a tolerance of 0.1 MPa in less than ten iter-
ations (see Sect. 7 for the solution procedure). This figure also shows the results obtained by the finite element
method for each pressure. The circumferential stress distribution for these values of internal pressure is depicted
in Fig. 8b in plane strain. As it is shown in this figure, circumferential stress has an ascending distribution in the
region in which material transformation has taken place and consequently follows a descending distribution in
the fully austenite region. However, as it will be shown in the following case studies, the circumferential stress
distribution does not follow this pattern for all the values of internal pressure. The axial stress component in
plane strain condition obtained by the semi-analytic solution is compared with the finite element results in
Fig. 8c. Martensitic volume fraction distribution, calculated by the present method, is shown and compared
with the finite element results in Fig. 8d. By comparing the results presented in Fig. 8d with the approximate
results of Fig. 5, it is seen that the error of Fig. 5 in predicting the boundary of phase transformation for
internal pressures p = 120, 160, and 200 MPa is 0.8, 11.4, and 27.1 percent, respectively. As expected, the
error of calculating the material transformation boundary by considering elastic stress distribution in regions
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Fig. 9 Distribution of a radial stress, b circumferential stress, and c martensitic volume fraction for an SMA thick-walled cylinder
subjected to internal pressure in plane stress with 0 < ξ < 1 at the inner radius

with phase transformation (like that presented in Fig. 5) increases by increase in the radius at which material
transformation has occurred.

The radial stress distribution, circumferential stress distribution, and martensitic volume fraction in plane
stress are shown in Fig. 9. Comparing these distributions in plane stress and plane strain reveals a minor dif-
ferences in the radial and circumferential stress distributions. It is worth mentioning that for elastic cylinders
the radial and circumferential stress distributions are identical in plane stress and plane strain. However, in
the present case of an SMA thick-walled cylinder, the phase transformation depends on the three-dimensional
state of stress and is affected by the axial stress that exists only in the plane strain case. Therefore, the phase
transformation distributions in plane stress and plane strain are not the same. This difference is calculated in
(15)–(16) and can clearly be seen by comparing the results in Figs. 8d and 9c. The difference in the phase
transformation distribution and the boundary of the region with phase transformation causes a minor difference
in the radial and circumferential stress distributions for plane stress and plane strain.

To obtain the internal pressure at which the martensitic volume fraction in the innermost radius reaches
ξ = 1, a trial and error method is used and the value of this pressure for the present case study is calculated
to be p = 238 MPa in plane stress and p = 260 MPa in plane strain. Distribution of stress components and
martensitic volume fraction for these pressures are calculated by the method of Sect. 5 and are depicted in
Figs. 10 and 11 for plane strain and plane stress, respectively. For any internal pressure larger than these values,
the fully martensite region spreads toward the outer radius and the method of Sect. 6 should be used in any fully
transformed annular region. The method of Sect. 6 is used, and distribution of stress components is calculated
for p = 300 Mpa in both plane stress and plane strain cases (see Sect. 7 for the solution procedure in this case).

For the internal pressure p = 300 MPa, a portion of the cylinder is fully transformed to martensite in
both plane stress and plane strain conditions. Figure 10 compares the radial, circumferential, and axial stress
distributions, and the martensitic volume fraction calculated by the present semi-analytic method and the
three-dimensional finite element simulations in the plane strain case. The radial stress, circumferential stress,
and martensitic volume fraction distributions for plane stress are shown and compared with the finite element
results in Fig. 11.
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Fig. 10 Distribution of a radial stress, b circumferential stress, c axial stress, and d martensitic volume fraction for an SMA
thick-walled cylinder under internal pressure in plane strain with ξ = 1 at the inner radius

As it is shown in Figs. 10b and 11b, by spread of the fully martensite region, the circumferential stress
distribution in the fully transformed region increases considerably. This phenomenon should be considered in
the design of SMA thick-walled pipe joints or pressure vessels. A designer should consider that any internal
pressure that causes a portion of the cylinder to be fully transformed to martensite will produce an extremely
large circumferential stress in the inner radius that should preferably be avoided. Figure 10c shows the axial
stress distribution in the plane strain case. As it is shown, the present method of enforcing the plane strain
condition for calculating the axial stress component leads to a good agreement between the semi-analytic
and numerical simulation results. Distribution of martensitic volume fraction is shown in Figs. 10d and 11c
for plane strain and plane stress, respectively. As it is shown in these figures, for p = 300 MPa an annular
region attached to the inner radius is completely converted to martensite (ξ = 1). As explained in Sect. 6 and
depicted in Fig. 7, in the present semi-analytic solution, an approximation is used for finding the values of
transformation strains in the region that is completely converted to martensite. In order to study the accuracy
of this approximation, the values of transformation strain components in plane stress are calculated for internal
pressure p = 300 MPa. These values are compared with the results of finite element simulations in Fig. 11d.
As it is seen, the present method predicts the transformation strains in good agreement with the finite element
results. So it can be concluded that choosing an appropriate number of load steps in the semi-analytic solution,
the proposed approximation will not affect the results. Looking at Figs. 8–11 reveals the acceptable agreement
between the numerical simulation results and the present semi-analytic solution. It is worth mentioning that the
results of the present method are obtained without a massive computation in contrast to the finite element (or
other numerical simulations) that require a massive iterative computational process. Since the semi-analytic
solution is not affected by those parameters that may make a numerical simulation ill-conditioned (e.g. the
number of loading steps and the number of convergence iterations in satisfying the constitutive equation (see
[32]) or the number of equilibrium iterations in the non-linear finite element simulation5), we believe that our

5 In the present case studies, the finite element simulation in each load increment (loading was divided into 100 increments)
needs up to 20 iterations for satisfying the constitutive equations convergence criteria with a tolerance of 1 × 10−6 for the
convergence of transformation function (see [32] and [22]). Since the geometry and loading are axisymmetric, the elements in the
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Fig. 11 Distribution of a radial stress, b circumferential stress, c martensitic volume fraction, and d transformation strain com-
ponents for an SMA thick-walled cylinder under internal pressure in plane stress with ξ = 1 at the inner radius

method can be used for validating the accuracy of numerical methods like finite element method in modeling
shape memory alloy structures.

9 Conclusions

A semi-analytic solution is presented for the analysis of shape memory alloy thick-walled cylinders subjected
to internal pressure in both plane stress and plane strain conditions. First, a two-dimensional reduction of Boyd–
Lagoudas’s polynomial SMA constitutive model is obtained for both plane stress and plane strain. Then, the
thick-walled cylinder is divided into a finite number of narrow annular regions, and the loading is partitioned
into a finite number of increments. Appropriate assumptions are made in each region in order to find a closed-
form solution for the equilibrium equations in terms of radial displacements within the regions in which the
phase transformation has started but has not completed. Considering the history of loading and the final values
of transformation strain components, another solution is given for those regions and load increments for which
the material is completely transformed to martensite. By satisfying the continuity condition at the interfaces
between the annular regions and the boundary conditions at the inner and outer radii, a semi-analytic solution
is obtained for any value of internal pressure. Several numerical examples are presented for different loading
phases, and the results of the proposed solution are compared with those of three-dimensional finite element
simulations in both plane stress and plane strain cases. In contrast with finite element simulations, the results
of the present semi-analytic solution are not severely affected by the number of load steps, and they are inde-
pendent of the criteria for satisfaction of the constitutive relation convergence, and the number of iterations
for convergence in considering geometric non-linearities. Considering the numerical stability of the present
semi-analytic method, we believe that it can be used in validating the results of common numerical methods
in analyzing shape memory alloy structures.

Footnote 5 continued
finite element model are not distorted significantly and less than five iterations were performed for the equilibrium satisfaction
due to the non-linear geometry in the finite element model.
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Appendix 1: Sensitivity of numerical results to the number of annular regions and load increments in the
semi-analytic solution and the number of elements and load increments in the finite element simulations

A sensitivity analysis is performed for choosing the appropriate number of annular regions N1 and load incre-
ments N2 in the semi-analytic solution and the number of elements and load increments in the finite element
simulations. The stress components are considered to be converged when the maximum difference is smaller
than 0.1 MPa, and the martensitic volume fraction convergence is achieved when the maximum difference is
smaller than 0.001. Figure 12a shows the effect of increasing the number of annular regions on the martensitic
volume fraction distribution in the plane strain case for p = 200 MPa and with considering 20 load increments.
The convergence is achieved with 100 annular regions for the martensitic volume fraction. The convergence
of the circumferential stress in this case for 100 annular regions is shown in Fig. 12b. The convergence for
radial stress distribution is achieved with 50 annular regions. Our numerical tests show that N1 = 100 is the
optimum value.

Figure 13a shows the effect of increasing the number of loading increments on the martensitic volume frac-
tion distribution in the plane strain case for p = 200MPa when the number of annular regions is N1 = 100.
Convergence is achieved with 10 load increments for the martensitic volume fraction. Convergence of the
circumferential stress in this case is achieved with 20 load increments as shown in Fig. 13b. Convergence for
radial stress distribution is achieved with 10 annular regions. It is seen that N2 = 20 is the optimum value. The
convergence study for the plane stress case leads to the same optimum number of annular regions and load
increments.

Figure 14 shows the effect of the number of finite elements on the finite element simulation results for
the martensitic volume fraction and circumferential stress component in the plane stress case. As it is shown,
results are not sensitive to the number of elements. The same analysis is performed for all the parameters, and
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Mesh 2 (see the caption of Fig. 14 for mesh definitions) with 30 × 1 × 1 elements in r, θ , and z directions is
considered for all the studies presented in this paper (20 node cubic elements are used in all cases).

In order to find the appropriate number of load increments in the finite element simulations, a sensitivity
analysis for the number of load increments is performed for all the parameters. Figure 15 shows the effect
of load increment numbers on the volume fraction and circumferential stress component in the plane stress
case. As it is seen, the finite element simulation results are not sensitive to the number of load increments as
well. It is worth mentioning that the history of these parameters as a function of internal pressure is highly
affected by the load increment numbers. For all the case studies presented in this paper, 100 load increments are
considered. The same sensitivity analysis for the plane strain case and for the other parameters is performed,
and the results are very similar to those of plane stress.
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