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Abstract

In this paper a micromechanical model that incorporates single crystal constitutive relationships is used for studying the pseudoelastic
response of polycrystalline shape memory alloys (SMAs). In the micromechanical framework, the stress-free transformation strains of
the possible martensite twinned structures, correspondence variant pairs (CVPs), obtained from the crystallographic data of NiTi are
used, and the overall transformation strain is obtained by defining a set of martensitic volume fractions corresponding to active CVPs
during phase transformation. The local form of the first law of thermodynamics is used and the energy balance relation for the polycrys-
talline SMAs is obtained. Generalized coupled thermomechanical governing equations considering the phase transformation latent heat
are derived for polycrystalline SMAs. A three-dimensional finite element framework is used and different polycrystalline samples are
modeled based on Voronoi tessellations. By considering appropriate distributions of crystallographic orientations in the grains obtained
from experimental texture measurements of NiTi samples, the effects of texture and the tension–compression asymmetry in polycrystal-
line SMAs are studied. The interaction between the stress state (tensile or compressive), the number of grains and the texture on the
mechanical response of polycrystalline SMAs is studied. It is found that the number of grains (or size) affects both the stress–strain
response and the phase transformation propagation in the material. In addition to tensile and compressive loadings, textured and untex-
tured NiTi micropillars with different sizes are also studied in bending. The coupled thermomechanical framework is used for analyzing
the effect of loading rate and the phase transformation latent heat on the response of both textured and untextured samples. It is shown
that the temperature changes due to the heat generation during phase transformation can affect the propagation of martensite in samples
subjected to high strain rates.
� 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Shape memory alloys (SMAs), particularly the near-
equiatomic TiNi alloys, are currently used in applications
in a wide variety of devices. SMA materials used in most
applications are polycrystalline in nature. The cast SMA

materials contain a random distribution of crystal orienta-
tions in the grains. However, in most applications, SMAs
are processed by casting, followed by hot-working (i.e.
drawing or rolling) and suitable heat treatments [44]. It is
known that the deformation processing has a significant
effect on the response of polycrystalline SMAs. For exam-
ple, while the material response for a cast NiTi sample is
almost symmetric in tension and compression, a cast, hot
rolled, then cold drawn material exhibits a very large asym-
metry in tension–compression response [8]. In some special
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samples, the maximum transformation strain in tension is
reported to be more than two times the maximum
transformation strain in compression for the hot rolled,
then cold drawn material, with a significant difference
between the stress levels in the stress–strain plateau [8].
This significant tension–compression stress–strain asymme-
try in processed SMAs is due to the strong crystallographic
texture. Gall and Sehitoglu [11] studied the role of texture
on tension–compression asymmetry in polycrystalline
NiTi. The crystallographic texture of some NiTi samples
was determined by X-ray diffraction. The samples they
studied were cold drawn, annealed, straightened, centerless
ground, aged for 0.25 h at 550 �C and machined into dog-
bone-shaped specimens with the loading axis parallel to the
drawing direction. It was shown that for these samples the
majority of the grains are oriented along the [111] crystal-
lographic direction, which is soft under tensile loading and
hard under compression. As a result of this textured orien-
tation, a significant tension–compression asymmetry is
observed in the stress–strain response of NiTi samples.

Macroscopic phenomenological constitutive frame-
works are efficient tools for modeling the mechanical or
thermomechanical response of polycrystalline SMAs in
engineering applications [43,18,38,34,29]. However, these
models are not appropriate for modeling the response of
SMAs at the microscale, and consequently are not able
to model some important aspects of the response of SMAs,
such as the phase transformation initiation and propaga-
tion among the grains. As already mentioned, the crystallo-
graphic texture is a key property in studying polycrystalline
SMAs. A simplified method for studying the role of texture
on the mechanical response of polycrystalline SMAs is to
use phenomenological constitutive equations and selecting
appropriate transformation functions for modeling the
asymmetry in SMAs [4,38]. However, a more precise anal-
ysis of the crystallographic texture and its effects on the
thermomechanical response can only be achieved by using
constitutive models based on the micromechanics of single
crystals for studying polycrystal structures [10,45]. In these
models, a polycrystalline material can be modeled by
assigning a separate crystal orientation to each grain.
Using this method, a preferred orientation of the crystallo-
graphic texture can be modeled, which leads to the actual
thermomechanical response of polycrystalline SMAs with-
out using an approximate phenomenological framework.

In the micromechanical models, the overall transforma-
tion strain is related to the stress-free transformation
strains of all the correspondence martensite variant pairs
(CVPs) obtained from the crystallographic data by using
a volume fraction coefficient for each variant. Some studies
based on these micromechanical models ignore the micro-
structure of grains and the intergranular interactions by
using different averaging schemes [42,35,24,11,7]. Although
these models are appropriate for studying the global
response of the material, and are capable of analyzing
important properties such as the role of texture on the ten-
sion–compression asymmetry [11], the grain boundary

interactions and the intergranular effects are not considered
in these models. To further understand the behavior of
polycrystalline SMAs, it is necessary to use the microme-
chanical constitutive frameworks in conjunction with an
accurate model of microstructure by simulating the poly-
crystal as a cluster of grains. The finite element method is
an efficient tool for studying polycrystalline SMAs using
the micromechanical framework. Gall et al. [10] and Lim
and McDowell [22] employed three-dimensional finite ele-
ment modeling to examine the thermomechanical behavior
of a polycrystalline NiTi SMA in the pseudoelastic regime.
In these works, a simplified geometric model was used in
which all the grains are assumed as identical hexagonal
prisms. Thamburaja and Anand [44] used a crystal-
mechanics-based constitutive framework and the finite ele-
ment modeling for studying the effect of crystallographic
texture on the response of polycrystalline SMAs. They
modeled the microstructure in the polycrystal by treating
all the grains as cubes stacked adjacent to each other, form-
ing a larger cube representing the polycrystal structure. A
similar microstructure was used for studying the superelas-
tic behavior of textured NiTi polycrystalline materials in
tension–torsion [45] and the thermal effects in the super-
elasticity of crystalline SMAs [1]. To further understand
the intergranular interactions in polycrystalline SMAs, we
use a more realistic polycrystal structure by implementing
Voronoi tessellations to generate the polycrystalline grain
structure of microscaled NiTi SMAs.

Another significant contribution of the present work is in
presenting an accurate thermomechanical framework for
studying the effect of phase transformation latent heat in
polycrystalline SMAs. There are several attempts in the lit-
erature for coupling the latent heat effect to the mechanical
response of polycrystalline SMAs. A group of these works
use the averaging schemes in studying the polycrystal and,
because the physical shape of grains is not modeled, the tem-
perature should also be studied as an averaged parameter in
the whole material [7]. In another attempt to better under-
stand the thermomechanical response of polycrystalline
SMAs, Anand and Gurtin [1] coupled the energy balance
equation with the mechanical constitutive relations for the
simplified microstructure model with cubic grains and stud-
ied the strain rate effect on the response of NiTi SMAs. Lim
and McDowell [22] introduced a simplified expression for
the volumetric heat generation due to phase transformation
and studied the coupled thermomechanical response of tex-
tured polycrystal samples in which the microstructure was
constructed by identical grains as hexagonal prisms. It was
assumed that the volumetric heat generation is proportional
to the rate of change of overall martensitic volume fraction
by using a constant relating the heat generation to the sum
of the rate of martensitic volume fraction changes in all
the active variants. In this paper, we use a comprehensive
description of the energy balance equation in SMAs for cal-
culating the latent heat during phase transformation. It will
be shown that the volumetric heat generation/absorption is
related to the rate of change of martensitic volume fractions
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and stress. Derivatives of the latent heat with respect to tem-
perature and strain are also calculated for implementation
in an incremental finite element framework.

Several case studies are considered in this paper to help
further understand some of the important phenomena in
the thermomechanical response of polycrystalline SMAs.
The role of texture on tension–compression asymmetry is
studied and it is shown that adding more grains with a
favorable crystal orientation changes the semi-symmetric
response of an untextured sample toward an asymmetric
response observed in single crystals. The effect of crystallo-
graphic texture on the phase transformation initiation and
propagation is studied and it is shown that, while the phase
transformation propagates almost equally in tension and
compression for an untextured material, the spatial distri-
bution of the martensite phase is remarkably more rapid
in compression when the grains have a favorable [111]
crystallographic orientation.1 The effects of size and the
number of grains on the mechanical response of polycrys-
talline SMAs subjected to both tensile and compressive
loads are studied and it is shown that the number of grains
has a strong effect on the initiation of phase transformation
at the grain boundaries and the propagation of martensite
region inside the polycrystal. Some case studies are pre-
sented for microscaled polycrystalline beams subjected to
bending and it is shown how the stress and martensitic vol-
ume fraction distributions are affected by the texture in the
beam. The load–deflection responses of textured and
untextured beams in bending are also compared. The ther-
momechanical response of polycrystalline SMAs is studied
by implementing the coupled energy balance and constitu-
tive equations. It is shown that the latent heat is the cause
of rate dependency in the response of SMAs at the micro-
scale. It is also shown that the effect of loading rate on
changing the slope of stress–strain plateau and changing
the hysteresis area is consistent with the results previously
observed at the macroscale. The effect of latent heat on
the propagation of phase transformation between the
grains is also studied, and it is shown that the phase trans-
formation is slightly suppressed in fast loadings due to the
temperature changes. The temperature changes at the
microscale are compared with those obtained previously
at the macroscale based on experimental observations
and phenomenological modelings. It is shown that the tem-
perature changes at different scales have similarities.

This paper is organized as follows. In Section 2 a micro-
mechanical-based constitutive model for polycrystalline
SMAs is presented. The thermomechanical coupling is dis-
cussed in Section 3. Details of the finite element frame-
work, modeling grains based on Voronoi tessellations
and the method of assigning appropriate crystallographic
orientations in the textured and untextured materials are

given in Section 4. The numerical results are presented in
Section 5. Conclusions are given in Section 6.

2. Constitutive modeling

In recent years, several different classes of constitutive
models have been introduced for studying SMAs. Some of
these models are developed for studying the macroscopic
behavior of polycrystalline SMAs. Phenomenological mac-
roscopic constitutive models are derived by using the Gibbs
free energy as the thermodynamic potential and choosing an
appropriate set of internal state variables to describe a mea-
sure of phase transformation. In these models evolution
equations are postulated for the internal variables (i.e. the
martensitic volume fraction and the transformation strain)
and the second law of thermodynamics is used in order to
find thermodynamic constraints on the material constitutive
equations [20,43,38]. In this work, we consider a microme-
chanical model in which the transformation strain is related
to the crystallographic data. Experimental and theoretical
data are used to find the stress free transformation strain
of martensite variants exactly [27,6]. The macroscopic trans-
formation strain is considered as a sum of different active
transforming martensite variants and the contribution of
each variant is related to the total strain by the volume frac-
tion of that specific variant [25,26,22,11]. The general micro-
mechanical framework is briefly discussed next. It is worth
noting that the austenite to martensite phase transformation
in the constitutive framework of this paper is rate-indepen-
dent in nature and possible effects of strain rate on the trans-
formation are ignored. However, the thermomechanical
coupling and the effect of phase transformation latent heat
causes the material response to be rate dependent which is
not directly caused by the rate dependency of the martensitic
transformation.

2.1. The micromechanical framework

We use the micromechanical framework of Patoor et al.
[36]. This model was used by Gall and Sehitoglu [11] to
study the role of texture in tension–compression asymme-
try in polycrystalline NiTi using an averaging scheme. It
was also implemented in a three-dimensional finite element
formulation for studying the cyclic thermomechanical
behavior of polycrystalline pseudoelastic SMAs [22] based
on a simplified model of the grains in the microstructure.
The stress-free transformation strain corresponding to the
nth martensite variant is given by

�̂n
ij ¼

1

2
g ln

i dn
j þ dn

i ln
j

� �
ð1Þ

where d is the transformation direction, l is the habit plane
normal and g is the transformation magnitude. We consider
the B2! B190 martensitic transformation for NiTi.
Theoretically, there are 192 possible variants in NiTi by
considering type I and type II twins [22], and this number
is even larger when considering the compound twinning in
NiTi [14,47]. However, it has been observed that type II-1

1 It is worth noting that the spatial spread of phase transformation
initiation is more rapid in tension, as reported by Gall et al. [10]. However,
we study the propagation of martensitic volume fraction as a function of
average strain, as discussed in Section 5.2.
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is by far the most prominent twinning mode in NiTi [32],
and calculating the transformation strain by considering
the active CVPs of this type results in a very good agreement
between experimental observations and theoretical predic-
tions [11,7,39,22]. In this case, the number of martensite
variants for transformation is 1 6 n 6 24 and the habit
plane and transformation direction components are ob-
tained from the crystallographic data (see Table 1 in [11]).
The transformation magnitude for this case is g = 0.1308.
The total transformation strain in a single grain is the sum
of transformation strains from all martensite variants. By
defining a martensitic volume fraction corresponding to
each variant, the volume averaged transformation strain is
given by2

�t
ij ¼

X24

n¼1

�̂n
ijn

n; ð2Þ

where nn is the volume fraction of the nth martensite variant.
The total martensitic volume fraction is n ¼

P24
n¼1n

n. The to-
tal volume fraction and the volume fraction of each variant
are always between 0 and 1. For a single crystal, several free
energy functions have been reported in the literature
[35,11,7,1]. In this paper, we use the Gibbs free energy G

for developing the coupled thermomechanical constitutive
framework for studying polycrystalline SMAs. To obtain
this function, we use the appropriate terms from the comple-
mentary free energy W (W = �G) introduced by Patoor et al.
[35] and the appropriate terms for the thermal free energy gi-
ven by Anand and Gurtin [1] in the Helmholtz free energy ŵ
for polycrystalline SMAs. The Gibbs free energy is given by:

Gðr; T ; nnÞ ¼ � 1

2
r : S : r

� r :
X24

n¼1

�̂nnn þ bðT� T 0Þ
X24

n¼1

nn � r : aðT� T 0Þ

þ qc ðT� T 0Þ � T ln
T
T 0

� �� �
þ
X24

m;n¼1

Hnmnnnm

ð3Þ

where S; r; T ; T 0; �̂
n and nn are the compliance tensor,

local stress tensor, temperature, reference temperature,
transformation strain and martensitic volume fraction on
the nth variant, respectively. The parameter b is a material
constant, a is the thermal expansion coefficient tensor and c

is the specific heat.3 The last term in Eq. (3) is an approx-
imation that accounts for martensite variant interactions
by introducing an interaction matrix H [36,35]. The terms

in this matrix represent the interaction energy due to the
formation of multiple interacting martensite CVPs. The
incompatible CVPs are mutually transformed with a higher
interaction energy compared to the compatible CVPs.
Compatible CVPs have a smaller net intrinsic shear strain
compared to incompatible CVPs, and the crystallographic
data can be used for finding the compatible and incompat-
ible pairs. However, we use a simplified method based on
the strain compatibility equation, as expressed in detail
by Gall and Sehitoglu [11]. Also, the interaction energies
for the compatible and incompatible CVPs are assumed
to be constant and temperature independent (Table 2 in
[11]), which is shown to give accurate results compared to
the experimental measurements [35,11,7,22]. The interface
energies are ignored in this model. This is reasonable as
the interface energies between the twin-related variants
can be ignored because of the compatibility at the interface.
The austenite (A)–martensite (M) interface energy is
remarkably small compared to the other terms in the en-
ergy so it can be ignored [15,37,23]. However, it should
be noted that, although these energies can be ignored at
the microscale, they play an important role at the nano-
scale [19,16].

By defining a deriving force fn for each variant as

fn ¼ �
@G
@nn
¼ r : �̂n �

X24

m¼1

Hnmnm � bðT� T 0Þ ð4Þ

the criteria for forward transformation of austenite to the
nth martensite variant is given by fn = fam and the condi-
tion for reverse transformation of the nth martensite vari-
ant to austenite is expressed as fn = fma, where fam and
fma are critical energies for A to M and M to A transforma-
tions, respectively. During the forward and reverse phase
transformations, the consistency condition _f n ¼ 0 is writ-
ten as

@fn

@r
: _rþ @fn

@T
: _T þ

X24

m¼1

@fn

@nm
_nm ¼ 0: ð5Þ

By substituting Eq. (4) into Eq. (5), the consistency condi-
tion can be rewritten as

_r : �̂n �
X24

m¼1

H nm
_nm � b _T ¼ 0: ð6Þ

The condition (6) will be used in the next section for finding
the incremental change of volume fraction of all the active
variants during the phase transformation. It is worth not-
ing that _n is nonzero only for the active variants that satisfy
the forward or reverse transformation conditions for the
deriving force (4) and it is computationally more efficient
to write the summations only on the active variants in
developing the numerical algorithm.

2.2. The mechanical and thermal Jacobians

We use a finite element framework for modeling
polycrystalline SMAs. For developing an incremental

2 Although the phase transformation induced deformation is inhomo-
geneous at the microscale, it can be assumed that the deformation is
averaged over a sufficiently large element that guaranties a smooth
response during phase transformation [44].

3 The parameters a and c may be considered as functions of the
martensitic volume fraction. However, for the SMAs used in practical
applications these parameters are independent of the volume fraction and
we have considered them constant throughout this paper, e.g. a = aA = aM

[38,28].
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displacement based finite element, in addition to the consti-
tutive relations given in the previous section, the tangent
stiffness (mechanical Jacobian) and thermal moduli tensors
are also needed. In order to obtain these tensors, the con-
stitutive model of the SMA material should be linearized
and represented as an incremental form. Deriving the
mechanical Jacobian is given briefly in the following. More
details of deriving the Jacobians are given by Lim and
McDowell [22].

For an infinitesimal time increment, Dt, the time rate of
each parameter P can be approximated by _P ¼ DP=Dt.
Using this approximation, Eq. (6) can be written as a set
of q simultaneous Eqs. (1 6 q 6 24 is the number of vari-
ants that satisfy the transformation conditions (4)):

Dr : �̂n ¼
X24

m¼1

H nmDnm þ bDT ð7Þ

Using this approximation, the stress increment is related
linearly to the increment of temperature and the martens-
itic volume fraction of active variants. It can be shown that
the martensitic volume fraction increment is also related to
the strain increment linearly [22]. The stress increment can
be approximated by

Dr ¼ @Dr

@D�
: D�þ @Dr

@DT
DT ð8Þ

where oDr/oD� is the mechanical Jacobian. The stress
increment can be written as

Dr ¼ S
�1 : D��

X24

m¼1

D�m

 !
ð9Þ

where �i is the contribution of transformation strain from
the ith martensite variant that is related to the stress-free
transformation strain of the corresponding variant through
the volume fraction as �i ¼ �̂ini. Substituting Eq. (9) into
Eq. (7), one obtains

S�1 : D��
X24

m¼1

�̂mDnm

 !
: �̂n ¼

X24

m¼1

HnmDnm þ bDT ð10Þ

By defining a transformation matrix C and a driving force
vector F as

Cmn ¼ �̂m : S�1 : �̂n þ Hmn; F m ¼ �̂m : S�1 : D�� bDT

ð11Þ
the set of q simultaneous Eq. (10) can be rewritten in the
matrix form as

½C�fDng ¼ fF g ð12Þ
where the size of vectors and the transformation matrix de-
pends on the number of active variants (q) and {Dn} is a vec-
tor containing the incremental change of volume fraction of
all the active variants. This set of equations will be used for
calculating the incremental change of volume fractions.

For deriving the mechanical Jacobian, the incremental
stress–strain relation (9) is differentiated with respect to
the strain increment as

@Dr

@D�
¼ S�1 : I�

X24

m¼1

@D�m

@D�

 !
ð13Þ

where I is the identity tensor. The derivative of the transfor-
mation strain with respect to the total strain can be written
as

@D�m

@D�
¼ @D�m

@Dnm �
@Dnm

@D�
¼ �m � C�1

mn

@F n

@D�
ð14Þ

where � denotes the tensor product, and the last term is de-
rived using the inverse of Eq. (12). Substituting Eq. (14)
into Eq. (13) gives the mechanical Jacobian to be imple-
mented in the finite element formulation. The thermal
Jacobian is obtained by differentiating Eq. (9) with respect
to the temperature increment as

@Dr

@DT
¼ S

�1 : �
X24

m¼1

@D�m

@DT

 !
ð15Þ

where the derivative of the transformation strain with re-
spect to temperature is calculated using the chain rule as

@D�m

@DT
¼ @D�m

@Dnm
@Dnm

@DT
¼ �̂mC�1

mn

@F n

@DT
ð16Þ

Substituting Eq. (16) into Eq. (15) gives the thermal Jaco-
bian. Details of implementing the calculated Jacobians and
the constitutive equations into the user subroutine
(UMAT) in the finite element program is given by Lim
and McDowell [22] as a computational step-by-step algo-
rithm. For algorithmic details of the time integration pro-
cedure for a rate-independent single-crystal constitutive
model for SMAs, readers are referred to [44]; their model
is based on the algorithm developed by Anand and Kothari
[2] for rate-independent crystal plasticity.

3. Thermomechanical coupling

We generalize the thermomechanical framework pre-
sented by Lim and McDowell [22] in this section by consid-
ering a comprehensive description of the energy balance
equation for obtaining the thermal coupled equations. It
will be shown that the method of relating the latent heat
linearly to the rate of change of martensitic volume fraction
is a simplification of this general model by ignoring some
terms in the energy balance equation. We use a similar
method as used previously by the authors for obtaining
the governing thermomechanical equations based on phe-
nomenological constitutive models for SMAs [28,30].

The coupled thermomechanical governing equations for
SMAs are derived by considering the first law of thermody-
namics in local form as

q _u ¼ r : _�� div qþ qĝ ð17Þ
where q is the mass density and u is the internal energy per
unit mass. The parameters q and ĝ are the heat flux and
internal heat generation. The dissipation inequality reads
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q_sþ 1

T
div q� qĝ

T
P 0 ð18Þ

where s is the entropy per unit mass. Substituting the fol-
lowing definition of Gibbs free energy

G ¼ qu� r : �� qsT ð19Þ
into the dissipation inequality, the second law of thermody-
namics reads

� _G� _r : �� qs _T P 0 ð20Þ
Using the definition of the Gibbs free energy (3), the time
derivative of G is given by

_G ¼ @G
@r

: _rþ @G
@T

_T þ
X24

n¼1

@G
@nn : _nn ð21Þ

Substituting Eq. (21) into Eq. (20) gives

� @G
@r
þ �

� �
: _r� @G

@T
þ qs

� �
_T �

X24

n¼1

@G
@nn : _nn P 0 ð22Þ

The validity of Eq. (22) for all _r and _T implies the follow-
ing constitutive equations:

� @G
@r
¼ �; � @G

@T
¼ qs ð23Þ

The energy balance equation is obtained by substituting
Eqs. (23) and (21) into Eq. (17) as

qT _s ¼ �
X24

n¼1

@G
@nn

_nn � divqþ qĝ ð24Þ

The constitutive relation (23)2 is used for calculating the
time derivative of the specific entropy as

q_s ¼ � @
_G

@T
¼ � @2G

@r@T
: _r� @

2G

@T 2
_T �

X24

n¼1

@2G
@nn@T

_nn ð25Þ

which, after substituting Eq. (3) into Eq. (25), gives the rate
of change of specific entropy as

q_s ¼ a : _rþ qc
T

_T � b
X24

n¼1

_nn ð26Þ

Substituting Eq. (26) into Eq. (24), the final form of the
first law is obtained as

qc _T ¼
X24

n¼1

� @G
@nn þ bT

� �
_nn � Ta : _r� divqþ qĝ ð27Þ

The energy balance (27) is used for finding the volumetric
heat generation in SMAs as

R ¼
X24

n¼1

� @G
@nn þ bT

� �
_nn � T a : _r ¼

X24

n¼1

ðfn þ bT Þ _nn � T a : _r ð28Þ

where the term fn is defined in Eq. (4). It is worth noting
that during the phase transformation the consistency con-
dition implies that fn = f±, where f+ = fam for the forward
phase transformation and f� = fma for the reverse transfor-
mation. Comparing Eq. (28) with the expression assumed

by Lim and McDowell [22], it is observed that Eq. (28)
can be simplified to the volumetric heat generation ob-
tained by Lim and McDowell [22] by ignoring the second
term that corresponds to the heat generation related to
the rate of change of stress and also ignoring the tempera-
ture dependency of the coefficient that relates the heat gen-
eration to the rate of change of martensitic volume
fraction.

The volumetric heat generation R is given to the finite
element model in a user subroutine (UMAT). The numer-
ical solution needs the derivatives of the volumetric heat
generation with respect to the temperature and strain.
For calculating the derivative of R, we use the variation
of the volumetric heat generation, which, after some
manipulations, is given as

dR ¼ 1

Dt
ðf � þ bTÞ

X24

n¼1

@Dnn

@D�
� a :

@Dr

@D�
T

" #
d�

þ 1

Dt
b
X24

n¼1

nn � a : Dr� a :
@Dr

@DT
Tþ ðf � þ bTÞ

X24

n¼1

@Dnn

@DT

" #
dT

ð29Þ

where oDr/oDT and oDr/oD� are the thermal and mechan-
ical Jacobians given in Eq. (15) and Eq. (13), respectively.
The terms oD nn/oDT and oDnn/o D� are given in Eq.
(16)2 and Eq. (14)2, respectively. Substituting these param-
eters into Eq. (29) gives the derivatives of the volumetric
heat generation with respect to temperature and strain as
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It is worth noting that in the numerical algorithm the sum-
mations with the volume fraction increment in Eqs. (28),
(31) and (30) are only written on the q active variants for
which the volume fraction is changing during the current
increment.

4. Finite element modeling

The constitutive equations, the mechanical and thermal
Jacobians, the volumetric heat generation, and the deriva-
tives of volumetric heat generation with respect to temper-
ature and strain are implemented in an appropriate user
subroutine (UMAT) in the finite element program ABA-
QUS. The subroutine is written in a local coordinate sys-
tem. In the finite element model, a separate local
orientation is assigned to the elements in each grain.
Details of assigning the crystal orientations for textured
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and untextured samples are given in Section 4.2. All the
orientation-dependent parameters are transformed to the
local coordinates before passing them into the subroutine,
and transformed back to the global coordinates when the
subroutine results are given to the finite element code.
We use the material properties given by Lim and McDo-
well [22]. These properties are obtained from differential
scanning calorimetry tests and the manufacturer’s data
for a commercial SMA used in the experiments by Lim
[21]. The elastic constants (Lamé parameters) are
k = 69.2 GPa and l = 46.2 GPa. The critical transforma-
tion energies are fam = 17 � 106 J m�3 and fma = 7 � 106

J m�3. The mass density is q = 6500 Kg m�3 and the
chemical energy coefficient is b = 0.6 � 106 J m�3 �C�1.
The thermal expansion coefficient is aij = adij, where
a = 22 � 10�6/K [17].4

4.1. Grain-scale modeling based on Voronoi tessellations

In the previously reported works in the literature that
study polycrystalline SMAs using micromechanical based
models, the polycrystal structure was designed for resem-
bling the microstructure to the actual structure as closely
as possible (see Fig. 2 in [22] and Fig. 5 in [44]). In these
works hexagonal prisms and cubes are used for modeling
the geometry of each grain which are far from the actual
grains shapes. We use a more realistic microstructure in
the finite element model for simulating polycrystal SMAs.

Voronoi tessellations are widely accepted to model poly-
crystalline aggregates as they provide a realistic approxi-
mation of the actual microstructure of non-uniform grain
shapes [5,9,46,41]. Voronoi cells are constructed from a
set of randomly positioned points (called the generators
or Poisson points) in the given domain. Each Voronoi cell
is the set of all points in the given set whose distances from
the corresponding generator are not greater than their dis-
tances from the other generators. Recently, novel frame-
works have been introduced for developing finite element
(FE) models based on Voronoi tessellations to generate
polycrystalline grain structures for micromechanics simula-
tions [40,41]. We use four different Voronoi tessellations
for modeling polycrystalline samples subjected to uniaxial
loading and bending in this paper. The microstructure
and finite element meshes of these models are shown in
Fig. 1.

The cubic model shown in Fig. 1a consists of 100 grains.
Each side of this cube is a = 250 lm, which, after consider-
ing the number of grains along each side, results in a mean
grain size of 50 lm that is consistent with the optical
micrographs of NiTi [10]. We use two models with different
numbers of grains, as shown in Fig. 1b and c for studying

the uniaxial tension and also bending. The polycrystalline
structure in Fig. 1b is 38 � 75 � 250 lm and contains a
total of 26 grains. The polycrystalline sample in Fig. 1c
is 150 � 300 � 1000 lm and is constructed by 357 grains.
Another sample with a circular cross-section is also used
for studying the uniaxial tension, as shown in Fig. 1d. This
model is constructed by 172 grains with a length and
radius of L = 1000 and r = 70 lm. The selected dimensions
in all these models result in a mean grain size of 50 lm.
Linear solid tetrahedral elements are used for constructing
the FE model (C3D4 and C3D4T). The finite element
meshes of the beams are shown in Fig. 1. Periodic bound-
ary conditions are not used in this paper. For nodes lying
on the back face perpendicular to the loading direction
(z = 0), the axial component of displacement is constrained
and one node at the corner is fixed in all directions to pre-
vent the rigid body motions. For the bending studies, the
nodes in the clamped surface are constrained in all
directions.

4.2. FE modeling of textured and untextured samples

In order to study the effect of texture on the bending
response of NiTi, we consider two different distributions
of crystal orientations in the grains. For modeling the
untextured material, a random orientation is assigned to
each grain. For modeling the textured material, the results
of texture analysis on a drawn bar using an X-ray diffrac-
tion are used [11,10]. The experimental pole figures result-
ing from the X-ray analysis show that the [111] directions
of the crystal lattice among all the grains are predomi-
nantly parallel to the axial direction (the z direction in
Fig. 1), while the [001] directions of the crystal lattice are
randomly distributed [11,22]. In the finite element model,
for modeling the textured material, all the elements in each
grain are assigned an orientation such that the [111] direc-
tion of all the orientations is scattered along the axis based
on a Gaussian distribution with standard deviation of 10�,
while the [001] directions are randomly distributed. In
order to verify the distribution of crystal orientations in
the microstructure, we use the orientations in all the grains
and calculate the orientation distribution functions for
plotting the pole figures corresponding to each sample.
These pole figures are compared with the experimental data
to make sure that the modeled texture is in agreement with
the measured data. As an example, the pole figures
obtained from the crystal orientations in all the grains for
the sample with 357 grains (Fig. 1c) is shown in Fig. 2.
Comparing these figures with the experimental data pre-
sented by Gall and Sehitoglu [11] shows that the texture
in the material is modeled accurately.

5. Numerical results

Several different case studies are presented in this section
for analyzing various aspects of the mechanical and ther-
momechanical response of polycrystalline NiTi SMAs. In

4 The compliance and thermal expansion tensors are anisotropic for
single crystal monoclinic martensitic NiTi. However, experimentally
measured values for the anisotropic material properties of NiTi are not
available and these properties can be assumed isotropic with an acceptable
accuracy, particularly when the inelastic response is studied [44].
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sections 5.1, 5.2, and 5.3 we ignore the thermomechanical
coupling by neglecting the effect of phase transformation
latent heat. In these sections the loading and unloading
processes are assumed to be isothermal. It is shown that
ignoring the latent heat and assuming an isothermal pro-
cess is valid when the material has enough time for
exchanging the generated or absorbed heat with the ambi-
ent. This is the case for slow loadings or ambient condi-
tions with high convection coefficients at the surfaces
[28]. The thermomechanical coupling is studied in Sec-
tion 5.4. It will be shown that the latent heat generated
by the phase transformation causes a rate dependency in
the response of polycrystalline SMAs. It is also shown that
the latent heat affects the martensite propagation between
the grains of a polycrystalline NiTi SMA.

5.1. The role of texture

In this section the role of texture on the mechanical
response of polycrystalline SMAs is studied. As mentioned
earlier, the role of texture on tension–compression asym-
metry has been studied extensively in the literature. The
uncoupled constitutive model of this paper was used by
Gall and Sehitoglu [11] for studying the stress–strain
behavior of textured and untextured polycrystalline NiTi
subjected to tension vs. compression. The microstructure
of the polycrystal is not modeled in this work and the con-
stitutive equations are solved for a cluster of 2000 grains
with different crystallographic orientations by calculating
the transformation strain corresponding to each orienta-

tion and summing the transformation strains for all the rel-
evant orientations. With this method, only the global
stress–strain response is modeled, and the distribution of
solution parameters in a polycrystal cannot be studied.
However, by using several experiments, Gall and Sehitoglu
[11] showed the capability and accuracy of this microme-
chanical model for studying the role of texture on the ten-
sion–compression asymmetry of polycrystalline SMAs.
Gall et al. [10] and Lim and McDowell [22] used finite ele-
ment modeling for studying textured polycrystalline NiTi
SMAs. In these works, a simplified geometry was chosen
for modeling the microstructure by assuming identical hex-
agonal prisms as grains in the polycrystal. The role of tex-
ture and the rate dependency based on a simplified
thermomechanical coupled model were studied. Thambu-
raja and Anand [44] studied the effect of crystallographic
texture on the response of polycrystalline SMAs using a
crystal-mechanics-based constitutive model and the finite
element simulation. The microstructure in the polycrystal
is modeled by assuming all the grains as cubes. In this sec-
tion we use the polycrystalline models based on the Voro-
noi tessellations for studying the rule of texture on the
mechanical response of NiTi SMAs. As the first step, the
effect of texture on the tension–compression asymmetry is
studied by considering a polycrystalline sample shown in
Fig. 1a. Details of the finite element simulation and model-
ing the crystal orientations for textured and untextured
samples are given in Section 4. The stress–strain responses
for textured and untextured NiTi in tension and compres-
sion are given in Fig. 3. The stress–strain response for a

Fig. 1. The finite element mesh of polycrystalline SMAs with (a) 100 grains, (b) 26 grains, (c) 357 grains and (d) 172 grains.

Fig. 2. The {111}, {110} and {100} pole figures obtained from the crystal orientations in the grains of the sample shown in Fig. 1c.
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single grain (modeled using one cubic element with periodic
boundary conditions) with the [111] crystal orientation
along the loading direction is also shown in Fig. 3b for
comparison purposes.

As shown in Fig. 3, while the tension–compression
response is almost symmetric for the polycrystalline NiTi
with random distribution of grain orientations, the
response is significantly asymmetric for the textured poly-
crystal. It is observed that the phase transformation is
slightly more favorable in compression compared to ten-
sion for the untextured material as shown in Fig. 3a. This
result is in agreement with the previously reported studies
of polycrystalline SMAs based on Taylor models [33],
self-consistent models [11], and micromechanical models
in conjunction with simplified finite element simulations
[10]. The stress–strain curves for a textured polycrystal
and a [111]-oriented single crystal are shown in Fig. 3b.
As observed earlier, the crystallographic texture is the ori-
gin of tension–compression asymmetry in polycrystalline
SMAs, and this phenomenon is reflected in the similarity
between the single crystal and textured polycrystalline
responses [12], as shown in Fig. 3b. The tension–compres-
sion asymmetry for the [111]-oriented single crystal can be
explained theoretically by considering the Schmid factors
of the most favorably oriented martensite variant for uni-
axial compression and tension directions, which are 0.27
and 0.39, respectively [36,13]. It is worth noting that, in
modeling the textured polycrystalline SMAs in Gall et al.
[10], the [111] crystallographic direction of the grains are
randomly wobbled around the loading direction within tol-
erances of 0–5 or 0–10 degrees. However, as explained in
Section 4.2, in the present work we use a Gaussian distribu-
tion for modeling the textured polycrystal. This is more
realistic and has the capability of modeling different tex-
tures more accurately by changing the standard deviation
in the distribution. By using a Gaussian distribution with
a relatively small standard deviation (10� in the present
work) for the crystallographic directions, the stress–strain

curves of the polycrystal are more similar to the response
of a single [111]-oriented crystal compared to a random
distribution between 0� and 10�. This happens because in
the Gaussian distribution with small standard deviations
most of the orientations are aligned near the [111] direc-
tion, while for a random distribution they are freely distrib-
uted between 0� and 10�. Comparing the results of the
present work with those of Gall et al. [10], we observe that
the difference between the response of a single crystal and a
polycrystal is more significant in Gall et al. [10]. However,
the present model is capable of modeling various textures
accurately by choosing appropriate standard deviations
in the Gaussian distribution.

Comparing the simulation results in Fig. 3b with the
experimentally measured stress–strain curves for polycrys-
tal and single crystal NiTi reported by Gall et al. [12], it
is clear that the present model is predicting the key features
of the response accurately. Consistent with the experi-
ments, the model predicts a slight decrease in the critical
transformation stress for the polycrystal compared to the
single crystal. Decreasing the stress levels for a polycrystal
is more prominent in compression, which is consistent with
the experimental observations. This can also be explained
based on transformation Schmid factor arguments
[36,10]. It is worth noting that a similar study was pre-
sented by Gall et al. [10], and the stress–strain curves for
a single crystal and a polycrystal were compared. As men-
tioned earlier, the structure of grains in the polycrystal is
modeled assuming a uniform shape for all the grains. The
simulation results in Gall et al. [10] show that the stress–
strain curves are not sensitive to the number of grains;
the results are not affected by increasing the number of
grains. This finding was also used by Lim and McDowell
[22] for concluding that a single mesh and microstructure
is adequate for studying the general response of polycrys-
talline SMAs. However, we will show in the present work
that the rapid convergence of results by increasing the
number of grains in the previous works is due to the
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Fig. 3. Comparison of the stress–strain response in tension and compression for (a) untextured and (b) textured NiTi polycrystal model with 100 grains as
shown in Fig. 1a.
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assumption of uniformity of the grain shapes. We will show
in the next section that, for the accurate microstructure
representation used in this paper, the material response is
highly affected by the number of grains, which can be
understood as a size effect.

5.2. The size effect

In this section, the effect of size (or the number of grains)
on the response of textured and untextured polycrystalline
SMAs is studied. The stress–strain curves for a cubic poly-
crystal shown in Fig. 1a are presented in Section 5.1. In this
section we study the uniaxial tension and compression for
the polycrystal models shown in Fig. 1b and c. As men-
tioned in Section 4.1, the model of Fig. 1b contains a total
of 26 grains and by considering a mean grain size of 50 lm
the size of this model is 38 � 75 � 250 lm. The polycrystal
model in Fig. 1c is 150 � 300 � 1000 l m and contains 357
grains. The results in this section can also be compared
with the curves in the previous section for a cubic model
with 100 grains. However, one should notice that the num-
ber of grains along the loading axis and in the cross-section
for the models of this section are different from the cubic
model in the previous section and the results cannot be
compared directly. We will also study the response of a sin-
gle crystal with [111] direction along the loading axis for
comparison purposes.

The stress–strain curves for the uniaxial loading of poly-
crystalline SMAs in tension and compression are shown in
Fig. 4. The uniaxial stress–strain curves for untextured
models are shown in Fig. 4a. It is observed that the differ-
ence between tensile and compressive responses is more
prominent for the larger model with 357 grains. Comparing
the results in this figure with those of Fig. 3a shows that the
difference between tensile and compressive responses is
remarkably larger for the rectangular cuboid models of
Fig. 1b and c compared to the cubic model of Fig. 1a. This
shows that not only the number of grains in the microme-

chanical model but also the shape of the sample can affect
the mechanical response of polycrystalline SMAs.

The stress–strain curves for the textured polycrystalline
samples are shown in Fig. 4b. Similar to the cubic model
with 100 grains, for both sizes considered in this section
the difference between the tensile and compressive
responses is remarkably larger for the NiTi polycrystal
with a dominant h111i fiber texture compared to the poly-
crystal with a random distribution of orientations. Fig. 4b
for the textured polycrystal NiTi shows that, while the ten-
sile response is not highly affected by the size, the compres-
sive response is remarkably different for the small and large
textured polycrystal samples. This phenomenon can be
explained by considering the stress–strain curves for a sin-
gle [11 1]-oriented crystal (shown with thin lines in the fig-
ure). As discussed in the previous section, the Schmid
factor arguments explain the effect of adding more grains
with [111] orientations around the loading direction on
increasing the difference in tensile and compressive
responses. As seen in Fig. 4a and b, in the model with 26
grains, the textured polycrystal contains a small number
of grains with [111] orientation and the response is moved
slightly from an untextured sample toward the single [111]-
oriented crystal. However, adding a large number of grains
with [111] orientation along the loading axis in the model
with 357 grains leads to a stress–strain curve similar to that
of the single crystal. The important observation is that the
compressive response is more sensitive to the size (or the
number of grains) compared to the tensile response. It is
worth noting that we are not considering the thermome-
chanical coupling in this section and the size effect studied
here does not originate from the size dependence of
exchanging the latent heat with the ambient that was previ-
ously studied in the macroscale [28]. Also, it should be
noted that periodic boundary conditions are not imposed
and our simulations correspond to the mechanical response
of NiTi micropillars with free surfaces. Conducting exper-
iments on some NiTi micropillars for studying the size
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effect and validating the theoretical observations will be the
subject of a future communication.

To further understand the effect of size and texture on
the response of polycrystalline SMAs, the distribution of
martensitic volume fraction is also studied. The initiation
and propagation of martensite during forward phase trans-
formation (austenite to martensite) are studied for small
and large models with 26 and 357 grains in tension and
compression. In each case, both random and textured dis-
tributions of crystallographic orientations are studied. In
order to label the contour plots in this section, we use a
three-letter code, in which the first letter stands for the tex-
ture (U for untextured and T for textured crystallographic
orientations), the second letter defines the size (L for the
larger model with 357 grains and S for smaller model with
26 grains) and the third letter represents the loading (T for
tension and C for compression). For comparison purposes,
a uniform color coding is selected in all the contour plots in
Figs. 5 and 6, in which red represents martensite and blue
shows austenite. The propagation of martensitic volume
fractions in large polycrystalline NiTi samples for strains
between 3 and 5% are shown in Fig. 5. The same results
for the smaller model with 26 grains are shown in Fig. 6.

Comparing the contour plots in Figs. 5 and 6 shows that
the martensitic volume fraction is strongly affected by the
texture, the number of grains and the stress state. Compar-

ing the first two rows in Fig. 5 shows that, while the phase
transformation initiates from a large number of grains dis-
tributed in the sample for the large polycrystal subjected to
tension with random orientation of grains (ULT), in the
large textured sample subjected to tension (TLT) the phase
transformation initiates in a limited number of grains with
more favorable crystallographic directions for phase trans-
formation in tension. Comparing tensile and compressive
responses of these models in Fig. 5 reveals an important
effect of texture on the martensite propagation in polycrys-
talline SMAs. Comparing the tensile and compressive
responses for the untextured large samples (ULT and
ULC) shows that the phase transformation propagates
similarly for both stress states. However, the same compar-
ison for the textured samples (TLT and TLC) shows that
the spatial spread of phase transformation is remarkably
more rapid under compression. It is worth noting that
the spatial spread of phase transformation initiation in tex-
tured polycrystal samples is more rapid in tension com-
pared to compression, as shown by Gall et al. [10]. They
studied the phase transformation initiation (at least
0.05% martensite was assumed as the initiation of phase
transformation), and it was observed that the number of
grains in which the phase transformation has been started
is larger in tension than in compression at equal strains.
This is consistent with the stress–strain response shown in

Fig. 5. The initiation and propagation of martensite in textured and untextured NiTi polycrystalline model with 357 grains subjected to 5% tensile and
compressive strain. The three-letter labels stand for texture (U for untextured and T for textured), size (L for large and S for small model) and loading (T
for tension and C for compression), respectively.
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Fig. 4 because the phase transformation initiation occurs at
lower strain values for tensile loading. However, we are
studying the contour plots of the martensitic volume frac-
tion and, as shown in this section, the spatial spread of
grains with a full transformation from austenite to mar-
tensite (shown with red in the contour plots) is more rapid
in compression. This result is also consistent with the
stress–strain curves shown in Fig. 4 where the phase trans-
formation is completed for smaller strains in compression
compared to tension. As shown in Fig. 4a, the compressive
and tensile responses for the untextured material are simi-
lar. This is the reason for observing a similar propagation
of martensitic volume fractions in ULT and ULC models
(Fig. 5). The martensitic volume fraction distributions for
smaller samples (with 26 grains) are shown in Fig. 6. The
grain boundaries are distinguished more clearly in this fig-
ure (see Fig. 1b for a better view of the grain boundaries).

Comparing the untextured and textured small samples
in tension (UST and TST in Fig. 6) shows that the phase
transformation initiates from more grains in the untextured
material. Also, it is observed that in the untextured samples
(both UST and USC in Fig. 6) the phase transformation
initiation from the grain boundaries is more prominent
compared to the textured polycrystal samples. This hap-
pens because in the untextured samples there are several
boundaries between grains with a large mismatch between

the crystallographic orientations, while in the textured
samples the orientations in adjacent grains are more likely
similar. It can be concluded that the initiation of phase
transformation from the grain boundaries plays a more
important rule in the untextured material compared to
the textured case. Comparing the tensile and compressive
responses for the textured and untextured samples shows
that the spatial distributions of phase transformation are
similar for the large and small samples.

Comparing the results in Figs. 5 and 6 shows that the
number of grains (or size) has a strong effect on the phase
transformation propagation in polycrystalline SMAs. As
shown in these figures, the role of phase transformation ini-
tiation at the grain boundaries is more prominent in the
small samples and the spread of the fully transformed
regions is affected by the number of grains. This difference
in the phase transformation propagation is related to the
size effect observed in the stress–strain responses (Fig. 4).

5.3. Bending analysis of microscaled beams

In this section the numerical results for bending analysis
of textured and untextured polycrystalline SMA beams are
presented. The FE models are shown in Fig. 1b and c. All the
nodes in one end are constrained in all directions and a
transverse displacement is applied to the nodes in the other

Fig. 6. The initiation and propagation of martensite in textured and untextured NiTi polycrystalline model with 26 grains subjected to 5% tensile and
compressive strain. The three-letter labels stand for texture (U for untextured and T for textured), size (L for large and S for small model) and loading (T
for tension and C for compression), respectively.
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end. The final transverse deflection d is set such that d/h = 2
for both beams, where h is the thickness. The loading phase
is then followed by an unloading phase that is modeled by
setting the deflection to zero. The geometrical nonlinearity
is considered in the FE solution for studying both the trans-
verse and in-plane deflections. The reaction forces at the
clamped nodes are computed and summed for obtaining
the total reaction force during loading–unloading. The
force–deflection response of the beams with 26 and 357
grains are shown in Fig. 7a and b, respectively. In both cases
of coarse and fine grains, the texture effect is studied by com-
paring the response of a beam with texture vs. an untextured
beam with random crystal orientations.

Comparing parts (a) and (b) of Fig. 7 shows that the
effect of texture on the force–deflection response is more
significant in the polycrystalline beam with a large number
of grains. The force–deflection response for the smaller
beam with 26 grains is almost identical for the textured
and untextured crystal orientations. We consider the poly-
crystal structure with 357 grains for studying the stress and
martensitic volume fraction distribution in the beams sub-

jected to bending in the following. All the distributions cor-
respond to the loading phase with d/h = 1.5. The
martensitic volume fraction (summation of volume fraction
of all active martensite variants) is shown in Fig. 8. The
volume fraction distributions in textured and untextured
beams are shown in Fig. 8a and b, respectively. Comparing
the volume fraction distribution near the clamped edge in
these figures shows the asymmetric distribution of matren-
site volume fraction in the textured beam. It was previously
shown that, while an untextured NiTi polycrystalline
response is semi-symmetric in tension–compression, the
tensile and compressive responses are remarkably different
in a textured polycrystal [11]. As mentioned in Section 5.1,
this happens because in the textured material the majority
of grains are oriented along the [111] crystallographic
direction, which is soft under tensile loading and hard
under compression. In the untextured samples the crystal-
lographic directions are randomly distributed, which leads
to an almost symmetric response in tension–compression.
As shown in Fig. 8a, the neutral axis position (marked
with a red arrow on the figure) is shifted towards the
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Fig. 8. Martensitic volume fraction distribution in a polycrystalline beam with 357 grains subjected to bending with (a) textured and (b) untextured crystal
orientations.
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compressive part of the cross-section for the textured
beam, while it is near the center line for the untextured
beam due to the symmetry in tension–compression
response. The response of macro-SMA beams subjected
to bending was studied previously by the authors based
on phenomenological constitutive frameworks [31]. Com-
paring the results of this section with those presented in
Mirzaeifar et al. [31] shows that the J2-based phenomeno-
logical models are suitable for modeling the response of
untextured polycrystalline materials, whereas J2 � I1-based
models can be used for studying the textured polycrystal
SMAs in bending with an acceptable accuracy.

The normal stress distribution is compared for the tex-
tured and untextured beams in Fig. 9a and b. An asymme-
try in the stress distribution for the textured material is
observed. It can also be observed that the maximum com-
pressive stress is remarkably larger than the maximum ten-
sile stress in the textured beam, which is consistent with the
stress–strain curves obtained in Section 5.1.

5.4. Thermomechanical coupling in polycrystalline SMAs

In this section the effect of phase transformation latent
heat is considered and the thermomechanical response of

textured and untextured polycrystalline SMAs is studied.
In the previous numerical case studies, an isothermal load-
ing–unloading process was assumed, which is valid when
the phase transformation latent heat can be exchanged with
the ambient and the material temperature is constant dur-
ing the whole process. In this section we consider the latent
heat effect and also the temperature changes due to gener-
ation or absorption of latent heat in forward or reverse
phase transformation as explained in Section 3. As men-
tioned earlier, our model considers a more accurate
description for the rate of latent heat generation and its
derivatives with respect to strain and temperature com-
pared to the simplified works previously reported in the lit-
erature [7,22]. Also, the more accurate micromechanical
model based on Voronoi tessellations sheds some light on
the effect of thermomechanical coupling on the propaga-
tion of phase transformation in polycrystalline NiTi.

In this section, a polycrystalline model with circular
cross-section is used. This model with 172 grains is shown
in Fig. 1d. The details of the finite element model and
mechanical boundary conditions are similar to those of
the previous case studies in Section 4. Continuous solid tet-
rahedral elements with added temperature degrees of free-
dom (C3D4T) are used. The initial temperature is

(a) (b)

Fig. 9. Normal stress distribution in a polycrystalline beam with 357 grains subjected to bending with (a) textured and (b) untextured crystal orientations.
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Fig. 10. The effect of loading rate by considering the thermomechanical coupling on the stress–strain response of (a) untextured and (b) textured
polycrystalline NiTi samples (the micromechanical model is shown in Fig. 1d).
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T0 = 293 K and the material is austenite initially. Free con-
vection with heat transfer coefficient h1 = 10 W/m2 K is
considered at the sides of the sample. Two different loading
rates of _� ¼ 10�4 and 10�1 s�1 are studied for simulating
the near isothermal and near adiabatic cases, respectively.
The polycrystal average stress–strain curves for these two
loading rates are shown in Fig. 10 for untextured and tex-
tured samples.

As shown in Fig. 10, in the vicinity of thermomechanical
coupling, the loading rate has a significant effect on the
mechanical response of both samples with textured and
random distributions of crystal orientations. Comparing
the stress–strain curves for slow and fast loadings in each
case shows that the maximum stresses at the end of the
loading phase are increased by 29.8% and 37.8% in fast
loading for untextured and textured samples, respectively.
For the fast loading, _� ¼ 10�1 s�1, the slope of stress–strain
curve is increased and the hysteresis area is slightly
decreased for both untextured and textured samples. These
observations are both consistent with similar responses at
the macroscale NiTi samples studied by a phenomenologi-
cal constitutive framework by ignoring the micromechani-

cal structure [28], and also experimental results for large
polycrystalline SMA samples [3]. The average temperature
of the polycrystal during loading–unloading is studied in
Fig. 11. The temperature at all the integration points is
averaged for calculating the parameter T in this figure.

As expected, the temperature change in slow loading is
negligible while a significant temperature change is observed
in fast loading _� ¼ 10�1 s�1. Fig. 11 shows that, during load-
ing for the strain rate _� ¼ 10�1 s�1, the temperature increase
in the textured material is larger at a specific stress (the tem-
perature increases from 297 to 309 K at r = 800 MPa in the
untextured sample, while it increases to 316 K at the same
stress level in the textured sample). However, the tempera-
ture change in the untextured sample is larger at the same
strain compared to the textured material (at the end of load-
ing with � = 0.05 the temperature is increased to 318 K in the
textured material, while the temperature in the untextured
sample is 320 K). The temperature changes are consistent
with the results obtained from phenomenological constitu-
tive equations for polycrystalline SMAs at large scales
[28]. As shown in Fig. 11, the average temperature of the
sample is lower than the initial temperature at the end of
loading for the slow loading rate. This phenomenon is also
observed in the calculations based on the phenomenological
constitutive equations. This effect can be explained as fol-
lows [28]. As shown in Fig. 10, at the beginning of unload-
ing, before the start of reverse phase transformation,
phase transformation does not occur. During this step, the
phase transformation heat is not generated and the material
is cooling due to convective heat exchange with the ambient.
This temperature loss is followed by heat absorption during
reverse phase transformation and causes the material to be
colder than the initial and ambient temperatures at the
end of the unloading phase.

The effect of thermomechanical coupling and the latent
heat on the propagation of phase transformation in the
polycrystalline material is studied next. We consider the
textured sample subjected to slow and fast loadings. The
stress–strain curves for this sample are shown in Fig. 10b.
The martensitic volume fraction distributions at the end
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Fig. 11. Average temperature of untextured and textured polycrystalline
NiTi samples subjected to slow and fast loadings.

Fig. 12. The martensitic volume fraction distributions at the end of the loading phase in the textured polycrystalline SMA samples subjected to (a) fast and
(b) slow loadings (the stress–strain curves are shown in Fig. 10b).
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of the loading phase in the textured polycrystalline SMA
samples are shown in Fig. 12.

Distribution of the martensitic volume fraction in the
sample subjected to fast loading is shown in Fig. 12a.
Two cuts along the length of the sample are used to show
the distribution inside the sample (the micromechanical
model is shown in Fig. 1d). Fig. 12b shows the same results
for the slow loading rate. Two sample regions with the
highest martensitic volume fraction values are marked by
dashed white lines in both figures. For comparison pur-
poses, a larger view of one of these regions is also shown
for both fast and slow loading rates. It is clear that the
loading rate affects the distribution of phase transforma-
tion. In both marked regions in the figure, the phase trans-
formation is distributed in a larger area in the sample
subjected to slow loading.

6. Conclusions

A constitutive model based on the micromechanics of
single crystals of SMAs is used for studying the pseudoelas-
tic response of polycrystalline SMAs subjected to uniaxial
and bending loads. By introducing a set of martensitic vol-
ume fractions corresponding to each active variant, the
total transformation strain is obtained as a function of
stress-free transformation strains of 24 CVPs obtained
from the crystallographic data for NiTi. Compared to the
available micromechanical-based models in the literature,
an improved coupled thermomechanical framework is
introduced for polycrystalline SMAs by coupling the
energy balance equation obtained from the first law of ther-
modynamics to the mechanical constitutive equations. The
microstructure of polycrystalline SMAs is simulated accu-
rately by using Voronoi tessellations in a three-dimensional
finite element model and various samples with different
number of grains and shapes are modeled for studying var-
ious aspects of the thermomechanical response of polycrys-
talline NiTi SMAs. The effect of crystallographic texture
on the thermomechanical response of NiTi is studied by
assigning appropriate crystallographic orientations in the
grains. The interaction between the stress state (tensile or
compressive), size (modeled by considering samples with
different number of grains) and crystallographic texture
on the mechanical response and phase transformation
propagation in polycrystalline SMAs is analyzed. The
bending response of polycrystalline micropillars is also
studied, and the effect of size and crystallographic texture
on the bending response is analyzed. Using the coupled
thermomechanical framework for polycrystalline SMAs,
the effect of loading rate and the phase transformation
latent heat on the response of textured and untextured NiTi
samples is studied. It is shown that the temperature
changes due to the heat generation during phase transfor-
mation can affect the propagation of martensite in samples
subjected to high strain rates.
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