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a b s t r a c t

In this paper, the pseudoelastic response of shape memory alloy (SMA) helical springs under axial force is
studied both analytically and numerically. In the analytical solution two different approximations are
considered. In the first approximation, both the curvature and pitch effects are assumed to be negligible.
This is the case for helical springs with large ratios of mean coil radius to the cross sectional radius (spring
index) and small pitch angles. Using this assumption, analysis of the helical spring is reduced to that of
the pure torsion of a straight bar with circular cross section. A three-dimensional phenomenological mac-
roscopic constitutive model for polycrystalline SMAs is reduced to the one-dimensional pure shear case
and a closed-form solution for torsional response of SMA bars in loading and unloading is obtained. In the
next step, the curvature effect is included and the SMA helical spring is analyzed using the exact solution
presented for torsion of curved SMA bars. In this refined solution, the effect of the direct shear force is
also considered. In the numerical analyses, the three-dimensional constitutive equations are imple-
mented in a finite element method and using solid elements the loading–unloading of an SMA helical
spring is simulated. Analytical and numerical results are compared and it is shown that the solution
based on the SMA curved bar torsion gives an accurate stress analysis in the cross section of the helical
SMA spring in addition to the global load–deflection response. All the results are compared with exper-
imental data for a Nitinol helical spring. Several case studies are presented using the proposed analytical
and numerical solutions and the effect of changing different parameters such as the material properties
and temperature on the loading–unloading hysteretic response of SMA helical springs is studied. Finally,
some practical recommendations are given for improving the performance of SMA helical springs used as
energy dissipating devices, for example for seismic applications.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Since the first observation of the shape memory effect (SME) in
some alloys (Chang and Read, 1951a,b), studying shape memory al-
loys (SMAs) has been an active field of research. The unique ability
of shape memory alloys in recovering large inelastic strains and
also generating high stresses has caused a considerable increase
in manufacturing devices made of these materials in recent years.
The SMAs are now used in applications in a wide variety of devices
ranging from simple parts like cell phone antennas or eyeglass
frames to complicated devices in mechanical (Brook, 1983; Jee
et al., 2006; Xua and Song, 2004), biomechanical (Petrini et al.,
2005), aerospace (Hartl and Lagoudas, 2007), and civil engineering
(DesRoches and Smith, 2004).

The unique macroscopic properties of SMAs are based on the
solid–solid phase transition of the underlying lattice between a

high symmetry cubic lattice (austenite) and a low symmetry lattice
(martensite). It is known that when the SMA atoms are arranged in
the cubic austenite lattice form, the entropy and internal energy
are higher compare to the martensite lattice. The competition be-
tween the entropy and internal energy is reflected in the free en-
ergy F = U � TS, where U is the internal energy, S is the entropy
and T is temperature. It is known that at higher temperatures the
entropy overcomes the competition and the austenite phase is pre-
ferred while at lower temperatures the internal energy determines
the stability and the martensite phase is preferred (Kastner, 2003,
2006). For a comprehensive discussion on general properties of
SMAs and the phase transformation phenomenon, readers are re-
ferred to Müller and Xu (1991) and Müller and Seelecke (2001).

As a result of the solid–solid phase transformation (usually
called martensitic phase transformation), and according to the spe-
cific way the transformation occurs, SMAs exhibit two significant
macroscopic phenomena: the shape memory effect and pseudo-
elasticity. Each of these two macroscopic responses to mechanical
and/or thermal loading is the origin of a vast range of applications
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for SMAs. In this paper we focus on the pseudoelasticity of SMAs.
This phenomenon occurs when the austenite phase is loaded iso-
thermally to full transformation to detwinned martensite and then
unloaded to the stress free state. During loading, after an initial
elastic response, a large amount of inelastic deformation strain is
produced. By unloading, strain is completely recovered during
transformation of martensite back to the austenite. Note that the
load–deflection response during a pseudoelastic loading–unload-
ing is temperature dependent.

While searching for new shape memory alloys for improving
their pseudoelastic response is still an active field of research
(Tanaka et al., 2010; Voit et al., 2010), a large effort has been made
by many researchers to introduce more precise analytical and
numerical methods for analyzing pseudoelastic and SME response
of SMA structures. Some of these studies focus on introducing
constitutive equations to model SMA response to mechanical and
thermal loads more accurately (see Liang and Rogers, 1992; Tanaka
et al., 1995; Boyd and Lagoudas, 1996; Bo and Lagoudas, 1999;
Qidwai and Lagoudas, 2000a; Popov and Lagoudas, 2007;
Arghavani et al., 2010) while others focus on numerical (Mirzaeifar
et al., 2009), semi-analytical (Mirzaeifar et al., in press), and exact
solutions (Mirzaeifar et al., 2010).

The pseudoelastic response of SMAs is hysteretic. This phenom-
enon provides ideal energy dissipating and damping capabilities
for SMAs and enables them to be used in passive control of struc-
tures under earthquake loads. DesRoches and Delemont (2002)
investigated the effectiveness of shape memory alloy restrainer
bars to reduce the seismic vulnerability of bridges. DesRoches
and Smith (2004) provided a critical review of the state-of-the-
art in the use of shape memory alloys for applications in seismic
resistant design. McCormick et al. (2006) studied seismic vibration
control using superelastic shape memory alloys by considering
NiTi wires and bars. Auricchio et al. (2006) studied the damping
properties of SMAs numerically and experimentally by considering
uniaxial loading of SMA bars and wires of different size and chem-
ical composition. Recently, Speicher et al. (2009) proposed a new
device with an SMA helical spring as a potential bracing element
in buildings. It is shown that this device can be used as an efficient
recentering system to improve the performance of structures dur-
ing seismic events.

During an earthquake event, the helical spring device will likely
see 20–25 cycles into the transformation stress range, depending
on the properties of the structure in which it is being used, and
the magnitude of the ground shaking. It is well known that SMAs
experience changes in behavior (typically referred to as the fatigue
effect) with increased cycling resulting in an accumulation of irre-
versible strain and a slight decrease in forward transformation
stress. Previous studies by the second author have shown that
these changes have minimal effect on the resulting behavior of
the system in which the SMA is used (Andrawes and DesRoches,
2008). Moreover, this effect can be minimized by mechanical train-
ing of the SMA material prior to implementation in the device
(McCormick and DesRoches, 2006). In this paper, we will not con-
sider the fatigue effect in analyzing the SMA springs. The necessity
of having an accurate analytical and numerical modeling of the
proposed SMA device besides its vast applications (Dong et al.,
2008; Liang and Rogers, 1997; Lee et al., 2009) motivated the
authors to seek analytical and numerical solutions for these
springs.

In one of the first studies of SMA helical springs, Tobushi and
Tanaka (1991) analyzed a helical spring under axial load assuming
that each small segment is in pure torsion. They used Tanaka’s con-
stitutive model (Tanaka, 1986) but in the stress–strain relation the
hardening during phase transformation is ignored and the material
is treated as perfectly plastic. Although this assumption simplifies
the solution remarkably, experimental results show that the hard-

ening response in stress–strain relations for polycrystalline SMAs
cannot be ignored. In another effort Toi et al. (2004) modified the
Brinson’s one-dimensional constitutive model (Brinson, 1993)
and implemented it in an incremental finite element formulation
using Timoshenko beam elements. In their study, SMA helical
springs are modeled numerically and simulation outputs are com-
pared with experimental results. Using beam elements for analysis
of helical springs decreases the computational time remarkably
but an accurate stress analysis cannot be done and as we will see
in the sequel, the stress and martensitic volume fraction distribu-
tions in the cross section of SMA helical springs cannot be captured
using beam elements.

In this paper, we propose three different analysis strategies be-
sides the experimental results for SMA helical springs subjected to
axial load. The simplest method for analyzing helical springs is to
assume that each portion of the spring acts as a straight bar under
torsion. It can be shown that when the spring index (the ratio of
mean coil radius to the cross section radius) is large and the helix
angle is small, this assumption leads to fairly accurate results
(Wahl, 1944). Readers are referred to Ancker and Goodier
(1958a,b,c) for a detailed discussion on the accuracy of this
assumption and modifications to obtain a more accurate solution
for elastic helical springs considering the curvature and pitch ef-
fects. In the present study, as the first approximation we introduce
an exact solution for analysis of SMA helical springs by ignoring the
curvature and pith effects. Although the analysis of helical springs
based on the straight bar torsion model (SBTM) is of enough accu-
racy for most practical helical elastic springs, it will be shown that
in the case of an SMA spring, curvature plays a significant rule and
an accurate stress analysis in the cross section cannot be obtained
based on SBTM. On the other hand, nearly all the practical helical
springs have small to large spring indices but small pitch angles
(Wahl, 1944). In order to capture a more accurate stress analysis
and to cover a wider range of practical springs, the curvature cor-
rection is added to SBTM and a curved bar torsion model (CBTM) is
presented. In addition to these two analytical models, a three-
dimensional finite element simulation method is developed for
analysis of SMA helical springs. Experimental test data on a Nitinol
spring subjected to axial compression are compared with the ana-
lytical, and numerical results, the accuracy of each method in pre-
dicting the global force–displacement and stress analysis is
investigated. It is shown that the SBTM calculates the global
force–displacement response with good accuracy but for precise
stress and martensitic volume fraction distributions, the curvature
correction should be used. Both analytical methods are remarkably
fast compared to the finite element simulations and can be used for
studying the effect of changing any of the material or geometrical
parameters on the spring response even for an optimization pro-
cess that needs a large number of simulations. In the numerical re-
sults, in addition to the comparisons that are presented for
studying the accuracy of different proposed methods, many case
studies are presented for studying the effect of changing material
parameters and the ambient temperature on the spring hysteretic
response. Finally, some recommendations are made for improving
SMA springs as dampers and energy absorbing devices.

This paper is organized as follows. In Section 2 a general three-
dimensional constitutive equation for polycrystalline SMAs and a
one-dimensional reduced constitutive equation for pure torsion
are briefly reviewed. In Section 3 two analytical methods based
on the exact solution for pure torsion of a straight SMA bar and
the torsion of a curved SMA bar for analyzing SMA helical springs
are presented. The experimental set-up and data for the SMA heli-
cal spring are discussed in Section 4 and the details of finite ele-
ment simulations are given in Section 5. Several case studies are
presented in Section 6 and a comparison is made between the
proposed methods for stress and load–deflection analysis of SMA

612 R. Mirzaeifar et al. / International Journal of Solids and Structures 48 (2011) 611–624



Author's personal copy

helical springs. Material uncertainty is studied and practical rec-
ommendations for improving SMA helical springs as energy
absorbing and damping devices are given. The effect of ambient
temperature on the spring response is also studied. Conclusions
are given in Section 7.

2. SMA constitutive equations

The total Gibbs free energy G for polycrystalline SMAs is given
by Boyd and Lagoudas (1996) and Qidwai and Lagoudas (2000a):

Gðr; T;�t; nÞ ¼ � 1
2q

r : S : r� 1
q

r : ½aðT � T0Þ þ �t�

þ c ðT � T0Þ � T ln
T
T0

� �� �
� s0T þ u0 þ

1
q

f ðnÞ; ð1Þ

where, S, a, c, q, s0 and u0 are the effective compliance tensor, effec-
tive thermal expansion coefficient tensor, effective specific heat,
mass density, effective specific entropy, and effective specific inter-
nal energy at the reference state, respectively. The symbols r, T, T0,
�t and n denote the Cauchy stress tensor, temperature, reference
temperature, transformation strain, and martensitic volume frac-
tion, respectively.

Based on Saint–Venant’s solution for torsion of prismatic bars
with general cross sections (Higgins, 1942), it is known that in pure
torsion of prismatic bars with circular cross section the no warpage
assumption is valid (Sokolnikoff, 1956). In this special case, the
state of stress and strain is one dimensional and shear strain varies
linearly from the central axis toward the outer radius. The one-
dimensional reduced stress, strain, and transformation strain ten-
sors have the following forms:

r ¼
0 0 0
0 0 shz

0 shz 0

264
375; � ¼

0 0 0
0 0 �hz

0 �hz 0

264
375; �t ¼

0 0 0
0 0 �t

hz

0 �t
hz 0

264
375;
ð2Þ

where shz, �hz and �t
hz are the shear stress, shear strain, and transfor-

mation shear strains, respectively.
All the effective material properties in (1) are assumed to vary

with the martensitic volume fraction (n) as

S ¼ SA þ nDS; a ¼ aA þ nDa; c ¼ cA þ nDc;

s0 ¼ sA
0 þ nDs; u0 ¼ uA

0 þ nDu0; ð3Þ

where the superscripts A and M represent the austenite and mar-
tensite phases, respectively. The symbol D(�) denotes the difference
of a quality (�) between the martensitic and austenitic phases, i.e.
D(�) = (�)M � (�)A. In (1), f(n) is a hardening function that models
the transformation strain hardening in the SMA material. In the
Boyd–Lagoudas polynomial hardening model (Lagoudas, 2008), this
function is given by

f nð Þ ¼
1
2 qbMn2 þ ðl1 þ l2Þn; _n > 0;
1
2 qbAn2 þ ðl1 � l2Þn; _n < 0;

(
ð4Þ

where, qbA, qbM, l1 and l2 are material constants for transforma-
tion strain hardening. The first condition in (4) represents the for-
ward phase transformation (A ? M) and the second condition
represents the reverse phase transformation (M ? A). The constitu-
tive relation of a shape memory material can be obtained by using
the total Gibbs free energy as

� ¼ �q
@G
@r
¼ S : rþ aðT � T0Þ þ �t ; ð5Þ

where � is the strain tensor (the one-dimensional form of strain cor-
responding to pure torsion is given in (2)). Considering the fact that

any change in the state of the system is only possible by a change in
the internal state variable n (Bo and Lagoudas, 1999), the evolution
of the transformation strain tensor is related to the evolution of the
martensitic volume fraction as _�t ¼ C _n, where C represents a trans-
formation tensor related to the deviatoric stress tensor and deter-
mines the flow direction as

C ¼
3
2

H
�r r0; _n > 0;

H
��tr �tr ; _n < 0:

(
ð6Þ

In (6), H is the maximum uniaxial transformation strain and �tr rep-
resents the transformation strain at the reverse phase transforma-
tion. The terms r0, �r and ��tr are the deviatoric stress tensor, the
second deviatoric stress invariant and the second deviatoric trans-
formation strain invariant, respectively, and are expressed as

r0 ¼ r� 1
3
ðtrrÞI; �r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
r0 : r0

r
; ��tr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
�tr : �tr

r
; ð7Þ

where I is the identity tensor. Using the one-dimensional stress and
strain state for pure torsion presented in (2), trr = 0 and the devia-
toric stress tensor will be the same as the stress tensor, r0 = r. The
second deviatoric stress and transformation strain invariants are re-
duced to read:

�r ¼
ffiffiffi
3
p
jshzj; ��tr ¼ 2ffiffiffi

3
p �tr

hz

�� ��: ð8Þ

The transformation tensors for pure torsion are expressed as:

Cþ ¼
ffiffiffi
3
p

2
H sgnðshzÞ

0 0 0
0 0 1
0 1 0

264
375; C� ¼

ffiffiffi
3
p

2
H sgn �tr

hz

� 	 0 0 0
0 0 1
0 1 0

264
375;
ð9Þ

where sgn (�) is the sign function and the superscripts + and � for
C represent the forward and inverse phase transformations,
respectively.

An additional constraint on the material behavior is obtained by
using the Second Law of Thermodynamics in the form of non-
negativeness of the rate of entropy production density (Qidwai
and Lagoudas, 2000a):

r : _�t � q
@G
@n

_n ¼ p _n P 0; ð10Þ

where p is a thermodynamic force and can be obtained by substi-
tuting (1) and the evolution relation into (10) as

p ¼ r : Cþ 1
2
r : DS : rþ Da : rðT � T0Þ

� qDc ðT � T0Þ � T ln
T
T0

� �� �
þ qDs0T � @f

@n
� qDu0: ð11Þ

Now, the transformation function that controls the onset of direct
and reverse phase transformation is defined as

U ¼ p� Y; _n > 0;
�p� Y ; _n < 0;

(
ð12Þ

where Y is a measure of internal dissipation due to microstructural
changes during phase transformation. The transformation function
represents the elastic domain in the stress–temperature state. In
other words, when U < 0 the material response is elastic and the
martensitic volume fraction does not change _n ¼ 0


 �
. During the

forward phase transformation from austenite to martensite
_n > 0

 �

and the reverse phase transformation from martensite to
austenite _n < 0


 �
, the state of stress, temperature and martensitic

volume fraction should remain on the transformation surface,
which is characterized by U = 0. It can be seen that transformation
surface in the stress–temperature space is represented by two
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separate surfaces that are defined by n = 0 and n = 1. Any state of
stress–temperature inside the inner surface (n = 0) represents the
austenite state with an elastic response. Outside the surface n = 1,
the material is fully martensite and behaves elastically. For any
state of stress–temperature on or in between these two surfaces
the material behavior is inelastic and a forward transformation oc-
curs. A similar transformation surface exists for the reverse phase
transformation.

In the one-dimensional case corresponding to pure torsion,
substituting (9) into (11) and (12) and using the following relation
between the constitutive model parameters:

qDu0þl1¼
1
2
qDs0ðMsþAf Þ; qbA¼�qDs0ðAf �AsÞ;

qbM¼�qDs0ðMs�Mf Þ;

Y¼�1
2
qDs0ðAf �MsÞ�l2; l2¼

1
4
ðqbA�qbMÞ; dr

dT
¼�qDs0

H
; ð13Þ

the following explicit expressions for the martensitic volume frac-
tion in direct and inverse phase transformation are obtained as

nþ ¼ 1

qbM

ffiffiffi
3
p

Hjshzj þ 2s2
hzDS44 þ fþðTÞ

n o
; ð14Þ

n� ¼ 1

qbA

ffiffiffi
3
p

Hshzsgnð�tr
hzÞ þ 2s2

hzDS44 þ f�ðTÞ
n o

; ð15Þ

where

fþðTÞ ¼ qDc ðT � T0Þ � T ln
T
T0

� �� �
þ qDs0ðT �MsÞ; ð16Þ

f�ðTÞ ¼ qDc ðT � T0Þ � T ln
T
T0

� �� �
þ qDs0ðT � Af Þ: ð17Þ

The parameters Ms and Af are the martensitic start and austenite fin-
ish temperatures, respectively. By substituting the explicit expres-
sion of the martensitic volume fraction in the evolution equation
and after integrating from zero to an arbitrary time, the transforma-
tion shear strain can be calculated. The constitutive relation (5) is
now reduced to read:

�hz ¼
1þ m

EA þ n�ðEM � EAÞ
shz

þ 1
qb�

3
2

H2shz þ
ffiffiffi
3
p

Hs2
hz@�DS44 þ

ffiffiffi
3
p

2
H@�f�ðTÞ

( )
; ð18Þ

where m is Poisson’s ratio and is assumed to be the same for both
phases. The + and � symbols are used for the direct and reverse
phase transformations, respectively, and the other parameters are:
@þ ¼ sgnðshzÞ;@� ¼ sgnð�tr

hzÞ;qbþ ¼ qbM , and qb� = qbA.

3. Analytical study of SMA helical springs

In this section, we present two different analytical methods for
calculating the loading–unloading response of SMA helical springs
under axial loads. For helical springs with a large spring index (de-
fined as m = Rm/R, where Rm is the mean coil radius and R is the
cross section radius) and a small helix angle, both the curvature
and pitch effects can be ignored without losing much accuracy.1

In this special case, the pure torsion analysis of a straight bar can
be used for analyzing the helical springs. For most practical springs,
the pitch angle is smaller than 15�, but the spring index varies in a
wide range. The curvature correction is added to the theory used
for studying the pure torsion of a straight bar and a more precise

solution is obtained for analyzing SMA helical springs with smaller
spring indices.

3.1. Analysis based on exact solution for pure torsion of SMA bars

We presented an exact solution for pure torsion of SMA straight
bars with circular cross section in our previous work (Mirzaeifar
et al., 2010). This solution is used here for analyzing the SMA heli-
cal springs and it is denoted by SBTM (straight bar torsion model)
throughout the text. Considering a straight bar with a general cross
section in the xy plane (z is along the bar axis), the state of shear
strain at a point in the cross section is, czx ¼ 2�zx ¼ h @w

@x � y
� 	

and

czy ¼ 2�zy ¼ h @w
@y þ x

 �

, where h is the twist angle per unit length

and w represents the warping function representing the cross sec-
tional deformation along the z-axis. For circular (Sokolnikoff, 1956)
and some other special cross sections (Chen, 2004), the warpage is
zero and the shear strains distribute linearly through the thickness.
For a bar with a circular cross section, the shear strain in (18) can
be related to twist angle per unit length as �hz ¼ 1

2 rh, where r is the
distance from the axis of the bar. Substituting (14) or (15) into (18)
and considering the special case in which both the shear stress and
the shear transformation strains are positive, (18) can be rewritten
as:

s4
hz þ F1s3

hz þ F2 þ F�2rh
� 	

s2
hz þ F3 þ F�3rh

� 	
shz þ F4 þ F�4rh

� 	
¼ 0

ð19Þ

with the coefficients given in Appendix A. This relation is a quartic
equation that can be solved analytically using Ferrari’s method
(Cardano et al., 2007) for finding the shear stress shz as a function
of twist angle and distance from z-axis as:

shz ¼ }�ðr; hÞ; ð20Þ

which is given explicitly in Appendix A. For an SMA bar under tor-
sion (with the axis of bar along z-direction), in the most general case
the cross section may be divided into three regions (see Mirzaeifar
et al., 2010, for more details). In the inner region, the material is in
the austenite phase and the relation shz = GArh with GA ¼ EA

2ð1þmÞ holds.
In the middle region, the phase transformation has started
(0 < n < 1) and the relation shz = }+(r,h) expressed in (20) is valid.
In the outer region the phase transformation is completed and the
material is in the martensite phase. In this region stress is calcu-
lated as shz ¼ sf

hz þ GMrðh� hf Þ, where sf
hz and hf are the shear stress

and the twist angle at which the phase transformation has been
completed (n = 1) everywhere. For a bar in the austenite phase with
h = 0, by increasing the twist angle, the phase transformation starts
from the outer radius and spreads toward the center. With more in-
crease of the twist angle, the third region with fully transformed
martensite spreads from the outer radius toward the center. The
outer radius of the inner and middle regions are denoted by r1

and r2 in the sequel. During the loading phase, in any cross section
the resultant torque is given by

Tþ ¼ 2p
Z r1

0
GAhr3dr þ 2p

Z r2

r1

}þðr; hÞr2dr

þ 2p
Z R

r2

sf
hz þ GMrðh� hf Þ


 �
r2dr: ð21Þ

In unloading, the cross section is divided into three regions as well.
The material in the inner region is in the austenite phase and has
experienced both elastic loading and unloading (the outer radius
of this region is denoted by r�1). In the middle region the bar has
experienced phase transformation during loading but the unloading
was elastic (the outer radius of this region is denoted by r�2). The
martensitic volume fraction for any material point in this region
is unchanged during unloading. The outer region of the cross

1 It is known that for helical springs with m > 4 and a pitch angle smaller than 15�,
the error of using SBTM for analyzing helical spring leads to less than 2% error with
common engineering materials used in practical springs (see Ancker and Goodier,
1958a; Wahl, 1944, for more details).
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section of a bar during unloading in torsion contains the material
that has experienced phase transformation during both loading
and unloading phases. A detailed analysis is presented by the
authors in a previous work (Mirzaeifar et al., 2010). During unload-
ing, the torque in the cross section is given by

T� ¼ 2p
Z r�1

0
GAhr3dr þ 2p

Z r�2

r�1

s‘hz � Geff rDh
� 	

r2dr

þ 2p
Z R

r�
2

}�ðr; hÞr2dr; ð22Þ

where the parameter s‘hz represents the value of shear stress for any
point at the end of the loading phase and Dh is the amount of re-
verse twist angle during unloading (Mirzaeifar et al., 2010).

Since in this assumption the spring is considered as a straight
bar of length l = 2pN Rm, where N is the number of active coils,
the total angular deflection of one end of the bar with respect to
the other end is given by H = 2pN Rmh. Because the effective mo-
ment arm of the axial load F is equal to Rm, the deflection of the
spring at the end point is given by

d ¼ HRm ¼ 2pNR2
mh: ð23Þ

For any deflection of the spring ends (23) is used for finding the
twist angle per unit length h. Substituting this value in (20), the
shear stress distribution in the cross section is calculated. Having
the shear stress distribution, the resultant torque in the cross sec-
tion is obtained by (21) or (22) and the axial force corresponding
to the assumed end displacement is calculated by dividing the tor-
que by the coil mean radius: F ¼ T�=Rm. In this approximation, the
effect of direct shear force on the cross section is ignored along with
the curvature and pitch effects. In the following section, a curvature
correction is added to the analysis and in each cross section both
the torque and direct shear forces are taken into consideration.

3.2. Curvature correction

Although the analysis of helical springs based on SBTM is of en-
ough accuracy for most practical helical springs, there have been
many efforts in the literature for improving this theory (Wahl,
1944; Ancker and Goodier, 1958a,b,c). It is known that due to the
curvature effect, the shear stress distribution in the cross section
is not axisymmetric. In this section, a curvature correction is
implemented in the solution presented in the previous section.
The solution of this section is applicable to SMA helical springs
with large spring indices but small pitch angles. This includes
nearly all the practical helical springs (Wahl, 1944). This solution
method is denoted by CBTM (curved bar torsion model) through-
out the text.

First, we consider the pure torsion of an SMA curved bar. A slice
of such a bar is shown in Fig. 1. Applying a torque the two faces of
this cross section will rotate with respect to each other by an angle
db. Since the initial length of the filament passing through the
points a and b are not the same, the strain distribution in the cross
section is not axisymmetric. This will result in a non axisymmetric
stress distribution with a larger value for the material points near
the axis AB. The non axisymmetric shear stress distribution in the
cross section can be decomposed into an axial component sa and a
transverse component st as shown in Fig. 1. If we assume that the
cross section is rotating about an axis passing through the center o
(at the center of rotation, the shear stress is zero), and considering
the fact that the shear stress at b is larger than the stress at a, such
a distribution cannot be in equilibrium; there will be a torque in
the cross section (Wahl, 1944). So, it can be concluded that for
a curved bar under torsion, the zero shear stress point or the
center of rotation does not coincide with the cross section center.

Considering the symmetry conditions in the cross section, the
forces caused by the transverse shear stress component st are in
equilibrium when the rotation center is anywhere on the axis ab.
The rotation center o0 is shown in Fig. 1. The distance e is found
by the method presented in the sequel.

In the coordinate system xy with the origin o0, when the slice
sides rotate by the amount db with respect to each other the rela-
tive movement of the ends of any filament corresponding to dA in
Fig. 1 is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
db. Considering the fact that the length of this fil-

ament in the undeformed configuration is (Rm � e � x)da, the shear
strain corresponding to this point in the cross section is

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Rm � e� x

db
da

; ð24Þ

where the shear strain c is along the direction of s in Fig. 1. The geo-
metrical parameters in (24) are shown in Fig. 1. Now, the expression
given for the shear strain in (24) should replace the expression rh
(that is the strain in the straight bar case) in (19) and all the coeffi-
cients given in Appendix A. The new quartic equation obtained by
this substitution is solved to find an explicit expression for the shear
stress in the regions with phase transformation. We denote the
shear stress in this case by s ¼ }̂�ðx; y; e; db=daÞ, where the explicit
expression for shear stress is similar to that given in Appendix A by
replacing the parameter rh with the shear strain of a curved bar in
(24). For a curved bar under pure torsion, the resultant force in the
cross section should be zero. Due to symmetry of the transverse
shear stress about the axis ab, the forces caused by this stress com-
ponent are in static equilibrium. The static equilibrium for the
forces caused by the axial component of the shear stress is ex-
pressed byZ

A
sadA ¼

Z
A1

GAx
Rm � e� x

db
da

dA1

þ
Z

A2

}̂�ðx; y; e; db=daÞ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p dA2

þ
Z

A3

sf
a þ

GMx
Rm � e� x

db� dbf

da

 !
dA3 ¼ 0; ð25Þ

where A1 is that portion of the section that has not experienced the
phase transformation. The portion of the cross section with phase
transformation is denoted by A2 and the parts in which the phase
transformation has been completed by A3. For each material point
with completed phase transformation (n = 1), the parameter sf

a is
the the axial component of shear stress corresponding to dbf that
is the twist angle of phase transformation completion for that mate-
rial point. Now, the only unknown parameter in (25) is the position
of the rotation center e. In contrast with the elastic torsion of a bar,
in the case of an SMA curved bar the second and third integrals
in (25) cannot be calculated analytically. We use trapezoidal
numerical integration method. In our numerical examples, we well

Fig. 1. Torsion of a curved bar.
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compare the results of the present model with those of a three-
dimensional finite element simulation.

For analyzing SMA helical springs based on the pure torsion of
an SMA curved bar, a minor correction is needed to take into ac-
count the direct shear force in the cross section. In an SMA helical
spring a direct shear force F and a torque RmF are acting in each
cross section. The equilibrium equations in the cross section in this
case readZ

A
sadA ¼ F and

Z
A
saxdAþ

Z
A
stydA ¼ RmF; ð26Þ

where in the most general case, the cross section is divided into
three regions similar to the previous cases. For analyzing the SMA
spring using the curved bar theory, a predefined displacement is
considered for the spring ends. The total rotation of the spring ends
with respect to each other is calculated by bH ¼ d=Rm. The twist an-
gle per curvature angle is given by

db
da
¼ d

2pRmN
: ð27Þ

The expression in Appendix A (by replacing rh with the shear
strain of a curved bar in (24)) is used to calculate the shear stress.
Since the axial force F is unknown, in contrast with the pure torsion
case the parameter e cannot be obtained directly by solving (26).
Hence, first an initial value2 is considered for e. Using this value
the axial force F is calculated using both expressions in (26). A trial
and error method is then used to find the value of e for which the
difference of the axial forces calculated from the two conditions in
(26) is smaller than a tolerance (1N in the numerical examples of this
paper).

4. Helical SMA spring test

An SMA helical spring shown in Fig. 2 is used for obtaining the
experimental results. The spring has a mean coil radius of
Rm = 2.1 cm, an initial length of 12.98 cm and the cross section ra-
dius of 6.25 mm (Speicher et al., 2009). The helical spring is placed
in a cylindrical shape tension/compression device and a 250 kN
MTS Universal Testing Machine is used for compressing the spring.
The tension/compression device is a cylindrical-shaped damper
that provides the ability to test a variety of SMA elements (Speicher
et al., 2009). The body and the shaft of the device are made out of
standard 304 stainless steel cylinders. The nitinol helical spring is
loaded on the center shaft using a nut. The outer cylinder covers
both the spring and the center shaft. The spring ends are free to ro-
tate during loading and unloading (see (Speicher et al., 2009) for
pictures of the test device). The quasi-static loading rate is set to
0.127 cm/s. Using this loading rate, the temperature change due
to the latent heat is negligible and the test can be considered iso-
thermal. Compression tests are done in the ambient temperature
of 27 �C. The experimental set-up and the test procedure are ex-
plained in detail in Speicher et al. (2009). This reference contains
a comprehensive study of three different SMA devices for applica-
tions as bracing elements in buildings.

The spring is made from Nitinol Alloy 508 (50.8% at.% Nickel). A
simple tension test is carried out on a bar of the same alloy and a
stabilized loading–unloading cycle for this specimen is shown in
Fig. 3(a). Due to the thermal and mechanical treatments done on
the initial SMA stock for producing a helical spring, the material

properties for the spring may have a slight difference with the
properties of SMA stock. The properties of Material II given in
Table 1 are calibrated by comparing the results of analytical and
numerical analyses with the experimental results of Speicher
et al. (2009) done on the SMA helical spring and the simple tension
test in Fig. 3(a). The response of material with calibrated properties
in simple tension is compared with the experimental results in
Fig. 3(a). In order to take the uncertainty effect in calculating the
material properties into consideration, we will present a discussion
on the effect of changing material properties on the spring re-
sponse in the sequel.

5. Finite element simulation of SMA helical springs

For analyzing SMA helical springs using the finite element
method, the three-dimensional constitutive relations of Section 2
are used and an appropriate user subroutine (UMAT) is written
by FORTRAN in the commercially available finite element program
ABAQUS that enables this code to model SMA structures using so-
lid elements and some two-dimensional elements. The details of
implementing the constitutive equation in a displacement based fi-
nite element formulation is given in Qidwai and Lagoudas (2000b)
and many case studies for validating the model are presented in
Mirzaeifar et al. (2009), Mirzaeifar et al. (2010) and Mirzaeifar
et al. (in press). In the present study, for comparison purposes
the spring is modeled three dimensionally (in contrast with some
finite element models in the literature that use beam elements
for modeling the SMA helical springs, e.g. Toi et al., 2004). Three
dimensional quadratic brick elements with reduced integration
(element C3D20R in ABAQUS) are used in the finite element model
of the helical spring. A convergence analysis is performed for
choosing the appropriate number of elements by considering the
shear stress distribution in the cross section and the load–displace-
ment response as the convergence criteria. The stress distribution
is considered to be converged when the maximum difference is
smaller than 0.1 MPa and the convergence criterion of the maxi-
mum difference for the load–displacement response is 10 N. We
observe that the convergence is achieved by using 7500 elements.
All the finite element simulations are done using this mesh. A sche-
matic of the finite element mesh is shown in Fig. 4.

For simulating the spring in compression, two rigid surfaces in
contact with the spring ends are considered (see Fig. 4). The lower
rigid surface is constrained in all directions and a time varying
boundary condition is defined for the upper surface for modeling
compression. A node to surface contact with a friction coefficient
of 0.1 is defined between the solid elements at the end rings and
the shell elements in the upper and lower rigid surfaces. The sup-
porting shaft in the experiments is modeled with a cylindrical rigid
surface inside the helical spring with a diameter slightly (0.2 mm)
smaller than the inner radius of the coil (this shaft is shown in
Fig. 4 (left) but not in Fig. 4 (right) to show the spring more clearly).
For avoiding high local stresses and the convergence problems in

2 The loading/unloading response of the SMA spring is analyzed by applying the
total axial deflection incrementally. In the first few increments the entire cross
section is in the austenite phase and hence the location of the rotation center is
calculated easily as the shear stress expression in (26) is integrable. For the
subsequent load increments, the initial guess for the parameter e for each increment
is the value obtained in the previous increment.

Fig. 2. The SMA helical spring used in the experimental study.
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the finite element solution, the contact between the solid elements
of the spring and the rigid cylindrical surface is considered friction-
less. Both spring ends are free to rotate in the numerical simula-
tion. The automatic time increment option in ABAQUS is used
with an initial guess of dividing the loading and unloading steps

into 100 increments and the non-linear geometry option is acti-
vated. The geometry of the spring modeled in the finite element
simulation is exactly the same as the helical spring in the experi-
mental tests (see Section 4).

6. Numerical results

In this section, several case studies are presented for demon-
strating the efficiency of the proposed analytical solution for ana-
lyzing SMA helical springs. The accuracy of the proposed exact
solution for pure torsion of SMA bars with circular cross section
was studied in Mirzaeifar et al. (2010). As mentioned in Section 5,
the developed finite element code for analyzing SMA structures
was verified in several case studies in the previous works of the
authors (Mirzaeifar et al., 2009; Mirzaeifar et al., 2010; Mirzaeifar
et al., in press). In the sequel, the accuracy of the proposed model
for analyzing SMA carved bars is studied by comparing the results
of this model with those of finite element simulations. Then, an
SMA helical spring is considered and the results obtained based
on the straight bar torsion, curved bar torsion, and finite element
simulations are compared. A case study is presented for comparing
the analytical and numerical results against the experimental re-
sults as well. The effect of changing material properties and tem-
perature on the response of SMA helical spring subjected to axial
loading–unloading cycle is studied and some practical recommen-
dations are given for improving the behavior of SMA helical springs
used for damping and dissipating energy in recentering devices in
buildings subjected to external loads, especially during seismic
events.

6.1. Verification of the curved SMA bar torsion

In order to verify the proposed solution for the SMA curved bar
torsion problem, a case study is considered and the analytical re-
sults are compared with the finite element simulation outputs.
Consider an SMA curved bar with Rm = 2 cm, the cross section ra-
dius R = 6 mm, and angle a = 20� (see Fig. 1). For verification pur-
poses, the material properties of a generic SMA as reported
previously in the literature (Qidwai and Lagoudas, 2000b) are used.
These properties are given in Table 1 as Material I. The left end of
the bar is constrained and a twist angle of 0.04 rad is applied to the
right end. The bar is considered to be in the austenite finish tem-
perature, T = 315 K.

The finite element model of the SMA curved bar is shown in
Fig. 5(a). The details of modeling this bar in the finite element code
ABAQUS are explained in Section 5. The martensitic volume frac-
tion distribution in the cross section of this bar is shown in
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Fig. 3. The calibrated material properties versus experiments in simple tension test for the material used in (a) Speicher et al. (2009), and (b) Toi et al. (2004) tests on SMA
helical springs.

Table 1
SMA material parameters.

Material
constants

A generic SMA
(Material I) (Qidwai
and Lagoudas, 2000b)

Ni50.8Ti49.2

(Material II)
(Speicher et al.,
2009)

Material III
(Toi et al.,
2004)

EA 70.0 � 109 Pa 48.5 � 109 Pa 34 � 109 Pa
EM 30.0 � 109 Pa 38.2 � 109 Pa 28.5 � 109 Pa
mA = mM 0.3 0.42 0.33
aA 22.0 � 10�6/K – –
aM 10.0 � 10�6/K – –
qDc = cM � cA 0.0 J/(m3 K) 0.0 J/(m3 K) 0.0 J/(m3 K)
H 0.05 0.047 0.047
dr
dT

7.0 � 106 Pa/K 6.0 � 106 Pa/K 9.8 � 106 Pa/
K

Af 315.0 K 288.15 K 292.6 K
As 295.0 K 258.15 K 273.7 K
Ms 291.0 K 258.15 K 252.9 K
Mf 271.0 K 218.15 K 220.8 K

Fig. 4. Finite element model of the SMA spring in the initial (left) and compressed
(right) configurations.
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Fig. 5(b). It is seen that in contrast with the straight bar torsion
(Mirzaeifar et al., 2010), in the case of a curved bar, the martensitic
volume fraction distribution is not axisymmetric as the zero stress
point o0 does not coincide with the cross section center.

Distribution of the axial component of shear stress sa along the
diameter ab (see Fig. 1) calculated by our method and the finite
element simulation is shown in Fig. 6. The shear stress is plotted
along this diameter in the coordinate system XY with the origin
at o (see Fig. 1). The zero shear stress occurs at a point with a dis-
tance e = 0.1 mm from the center of the cross section. Although e is
very small, it has a significant effect on the stress and martensitic
volume fraction distributions in the cross section. The non symme-
try of the shear stress distribution is clearly seen in Fig. 6
(sa = 120.1 MPa at point a and sa = 104.3 MPa at point b).

The martensitic volume fraction distribution along the diameter
ab is shown in Fig. 7. The curvature clearly affects the phase trans-
formation and as it is shown the material points closer to the axis
have higher volume fractions compared to the outer points. This
non symmetry is seen in the finite element results as well (see
Fig. 5(b)). As it is shown in Figs. 6 and 7, there is good agreement
between the results of our method and the finite element simula-
tion results.

6.2. Analytical and numerical results for SMA helical springs

In this section, by considering a practical case study we will
compare the results of our analytical formulation with the results
of a finite element simulation. We consider an SMA helical spring
with dimensions given in Section 4. Details of the finite element
modeling are given in the previous section. The Nitinol Alloy 508
(50.8% at.% Nickel) material properties are considered for all the
case studies. As explained in Section 4, these properties are cali-
brated from a simple tension test and the experimental tests on
the SMA helical spring and are given in Table 1 as Material II. A
loading–unloading cycle with maximum stroke of d = 2.75 cm is
considered. The spring is at the ambient temperature T = 27 �C. A
schematic of the undeformed spring in the finite element model
is shown in Fig. 4(left). The finite element mesh at the end of load-
ing cycle is shown in Fig. 4(right).

The load deflection plots in the loading–unloading cycle ob-
tained based on SBTM, CBTM, and the finite element simulation
are compared in Fig. 8. As it is shown in this figure, adding the cur-
vature correction to the straight bar theory increases the agree-
ment between the analytical and numerical results. The
difference between the results of the curved bar theory and the
numerical simulations perhaps is caused by ignoring bending due
to the pitch effect in the analytical solution. However, considering
the remarkable computational time reduction in using the analyt-

ical results reveals the value of analyzing the SMA helical springs
using our proposed analytic solution. The finite element simulation
takes almost 2 h on a 2 GHz CPU with 2 GB RAM while the analytic
solution results based on the curved bar torsion are obtained in
less than 2 min and the solution based on the straight bar torsion
is obtained in a few seconds on the same system (the solution

(a) (b)

Fig. 5. (a) Finite element model for simulating torsion of an SMA curved bar, and (b) the non-axisymmetric distribution of martensitic volume fraction for the torsion of a
curved bar.
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Fig. 6. Distribution of sa in an SMA curved bar subjected to torsion along diameter
ab in Fig. 1 (eX ¼ X=R and sy = 88.1 MPa is the shear stress at the start of phase
transformation obtained by solving (14) for n+ = 0).
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based on CBTM takes more time because the parameter e should be
obtained iteratively as was explained in Section 3.2). The decrease
in the computational time will be even more significant when
repetitive simulations are needed, e.g. in most optimization proce-
dures (Papadimitriou and Steiglitz, 1982; Goldberg, 1989).

The axial component of shear stress sa in the cross section on a
horizontal diameter (like the diameter ab in Fig. 1) is calculated
using SBTM, CBTM and finite element simulations3 and the results
are compared in Fig. 9. The martensitic volume fraction distributions
obtained by these solution methods are depicted in Fig. 10. As it is
shown in Figs. 9 and 10, unlike the load–displacement response,
the stress and martensitic volume fraction distributions are highly
affected by adding the curvature correction to SBTM. It is evident
that CBTM predicts the stress and martensitic volume fraction distri-
butions with a good agreement with the three-dimensional finite
element simulations. As it is shown in Fig. 9, in contrast with the
pure torsion of a curved bar, the zero shear stress point (the rotation
center o0) is located at a point toward the outer surface of the curved
bar (compare the zero stress points in Figs. 6 and 9 and see the diam-
eter ab in Fig. 1). This phenomenon is due to direct shear force in the
cross section in formulating the SMA helical spring. Also, it is worth
noting that, unlike the elastic curved bar torsion, in the SMA helical
spring the zero shear stress point is not fixed in the cross section; it
moves during loading and unloading. Fig. 11 shows the movement of
the rotation center in the SMA helical spring cross section. It is seen
that when the cross section is in the austenite phase and the spring
response is elastic, the rotation center is fixed. When phase transfor-
mation occurs during loading and unloading, the zero shear stress
point moves toward the outer surface of the curved bar and comes
back to the elastic position.

6.3. Experimental results

In this section, we use the experimental data of an SMA helical
spring from a previous work of the second author (Speicher et al.,
2009) for studying the accuracy of our analytical and numerical
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Fig. 8. Axial force versus axial displacement for an SMA helical spring calculated by
the analytic solutions (CBTM: curved bar torsion model, STBM: straight bar torsion
model) and the finite element simulation.
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3 In practice, when a helical spring is loaded between two planar plates (like the
experimental test and the finite element simulation in the present paper), the applied
end loads are eccentric with respect to the spring axis and hence the spring is
subjected to a global bending. This global bending causes a lateral deflection with
respect to the spring axis that is maximum at the middle of the spring. To avoid this
global bending effect, the finite element results are reported for a cross section in the
first upper ring of the spring (Wahl, 1944).
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models. In performing the experiments, a setup as explained in
Section 4 is used. The SMA helical spring is placed in a tension/
compression cylindrical device. In order to increase the initial stiff-
ness of the device (that is preferred when the spring is used for en-
ergy dissipation in seismic events), a precompression of 1.15 cm is
given to the spring by tightening a nut on the shaft that carries the
spring (see Speicher et al., 2009, for more details on the experi-
mental set-up). The spring is studied under various loading–
unloading cycles. We will compare our analytical and numerical
simulation results with those of an experiment in which the spring
is compressed to dpc = 1.6 cm and then unloaded (dpc is the dis-
placement of the ends of a precompressed spring). The results of
loading–unloading cycle for this spring obtained by SBTM, CBTM,
finite element simulation, and experimental results are compared
in Fig. 12.

As it is shown in Fig. 12, due to the precompression effect the
spring does not respond to the axial forces smaller than the pre-
compression force. The presented analytical and numerical analy-
sis predict the precompression force with less than 10% error
compared to the experimental results. A good agreement is seen
between the analytical, numerical, and experimental results during
the loading–unloading phase. At the end of loading, a sudden jump
occurs in the experimental load–deflection curve. This jump may
be caused by a contact between the spring rings.4 The contact at
the end of the loading phase causes severe local stress concentration
and local phase transformation at the contact points. The locally con-
tact induced phase transformation may be an explanation for a slight
disagreement that is seen between the analytical and experimental
results at the beginning of the unloading phase.5 However, all the re-
sults are in good agreement for the rest of the unloading phase.

Two other case studies are considered for validating the pre-
sented analytical formulation with the experimental results. Toi
et al. (2004) presented experimental results for SMA helical springs
in tension and compared them with their finite element simulation
results. In the numerical simulations presented by Toi et al. (2004),
an incremental finite element using linear Timoshenko beam ele-
ments is formulated using a total Lagrangian approach for the
superelastic, large deformation analysis of SMA helical springs. A
simple tension test is carried out on the material of springs as
shown in Fig. 3(b). The presented constitutive model is calibrated
using these results and the calibrated properties for this material
are given in Table 1 as Material III. Fig. 3(b) compares the simu-
lated response of material using the presented constitutive model
with the experimental results for simple tension. Two different
springs are considered in experiments. Both springs have a mean
coil radius of Rm=3.65 mm, and the cross section radius of
0.5 mm. One of the springs has a total length of 5 mm and five
turns and the other one has a total length of 10 mm with ten turns.
Both springs are subjected to tension and tests are carried out at
T = 305 K. The analytical results obtained by the present CBTM
are compared with the experimental and numerical results of Toi
et al. (2004) in Fig. 13. A good agreement is seen between the
CBTM and the finite element simulation results using Timoshenko
beam elements. Both the numerical and analytical results have a
slight difference with the experiments. This difference is most
likely caused by the non-linearity effects due to the extreme
amount of elongation in the experiments.

6.4. Uncertainty in material properties

As mentioned earlier, making an SMA helical spring from a
straight bar is done by performing a set of thermal and mechanical
treatments on the initial SMA stock. Due to this complicated ther-
mo-mechanical treatment, the material properties are not the
same as the initial stock and in practice if a number of helical
springs are made from an SMA stock, a slight difference may be
seen in the material properties of these springs. Andrawes and
DesRoches (2007) presented a detailed study of the effect of a
change in the material properties of SMAs in uniaxial tension on
the hysteretic response and energy dissipation capability of these

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
0

500

1000

1500

2000

2500

3000

3500

4000

δ
pc

 (m)

F 
(N

)

Experimental

ABAQUS

CBTM
SBTM

Fig. 12. Axial force versus axial displacement (considering the pre-compression) for an SMA helical spring calculated by the analytic solutions (CBTM: curved bar torsion
model, STBM: straight bar torsion model), finite element simulations, and experimental tests.

4 As shown in Fig. 2 due to manufacturing difficulties, the helical spring does not
have a perfectly uniform shape and the first and last rings have smaller pitch angles
compared to the other rings. An initial contact occurs in these rings at the end of the
loading phase.

5 It is worth noting that in modeling the loading–unloading phase even in a simple
uniaxial case, the constitutive equation used in this paper (the Boyd–Lagoudas’
polynomial hardening model) shows a slight difference at the beginning of the
unloading phase. Some improvements are provided for the hardening function to
reduce this difference (see Chapter 3 in Lagoudas (2008)). As we are seeking closed-
form solutions in this paper, the polynomial hardening function is preferred.
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materials. The properties given in Table 1 for Material II are cali-
brated by comparing the results of analytical and numerical anal-
yses with the experimental results done on the present SMA
helical spring. However, in order to take the uncertainty of the
material properties into consideration, we present a discussion
on the effect of changing material properties on the spring re-
sponse in this section. The numerical results presented in this sec-
tion can also be used in designing SMA helical springs for various
applications. All the numerical results in this section are presented
based on CBTM and the spring is considered to be at T = 27 �C.

Two of the material properties that have a significant influence
on the SMA helical spring response in loading–unloading are the
austenite and martensite elastic moduli. In practice, the elastic
modulus of different SMAs covers a wide range (see Toi et al.
(2004) for an SMA with EA = 34 GPA, EM = 28.5 GPA and Jacobus
et al. (1996) for an SMA with EA = 72 GPA, EM = 30 GPA). The effect
of a decrease and increase in the elastic moduli of a material with
properties given in Table 1 is shown in Fig. 14. As it is shown in this
figure, increasing EA and EM causes a remarkable increase in the
hysteresis area that is strongly preferred for springs as energy
absorbing devices. Note that this area is proportional to the
amount of absorbed energy in a loading–unloading cycle.

The effects of an increase or decrease in the parameter dr/dT by
the amounts of 15% and 30% are shown in Fig. 15. The parameter
dr/dT is the transformation curve slope in stress–temperature
space and as expressed in (13), it is related to the specific entropy

difference qDs0 (see Qidwai and Lagoudas, 2000a, for more details
on the physics of the material properties and for a detailed exper-
imental technique for measuring these properties). As it is shown
in Fig. 15, an increase in the parameter dr/dT decreases the hyster-
esis area but remarkably increases the spring stiffness. This figure
leads to an important conclusion for designing SMA helical springs
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Fig. 13. Axial force versus axial displacement.
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as energy absorbing devices. It shows that in the cases that a stiffer
spring is needed, SMA materials with larger dr/dT are preferred
while the springs made of SMA materials with lower dr/dT have
lower stiffness and larger hysteresis area.

6.5. The effect of ambient temperature on the SMA spring response

As mentioned in Section 4, a slow loading rate is considered in
the experimental and analytical analyses of the SMA helical spring
in this paper. In slow loadings, the isothermal assumption is valid
and the spring can be considered to be in the same temperature
with the ambient environment during loading and unloading.
Since one of the applications of SMA helical springs is seismic ret-
rofit of buildings (Speicher et al., 2009), the spring may be used in
various areas or at different times of a year. Therefore, it is impor-
tant to study the effect of ambient temperature on the spring re-
sponse. Three common temperatures are considered in Fig. 16
and the spring loading–unloading response in these temperatures
is calculated (the results are obtained using CBTM). As it is shown
in this figure, the ambient temperature has a considerable effect on
the SMA helical spring response and at higher temperatures the
hysteresis area decreases remarkably while the stiffness is in-
creased. The spring loading–unloading cycle has a larger hysteresis
area at lower temperatures but the stiffness is lower compared to
higher temperatures.

6.6. CBTM and STBM for analyzing different spring geometries

As mentioned in the previous sections, introducing the curva-
ture effect in the solution based on the torsion of straight bars
for analyzing helical SMA springs (SBTM), a more accurate method
(CBTM) is obtained for SMA springs with smaller indices. Because
the CBTM needs an iterative procedure for finding the location of
torsion centroid, it is more time consuming compared to the STBM.
From a design point of view it would be interesting to find the
range of spring indices for which the STBM gives acceptable accu-
racy and a criterion for the necessity of using CBTM. In this section
an SMA helical spring with properties given in Table 1 as Material II
is considered. The mean coil radius is Rm = 2 cm and the total
length of the spring is 11 cm. The spring has five turns and it is sub-
jected to tension causing a maximum elongation of 6 cm. The cross
section radius is considered variable for obtaining different helix
indices. Temperature is assumed to be T = 300 K. Fig. 17(a) shows
the maximum shear stress in the cross section and Fig. 17(b) shows
the maximum volume fraction in the cross section for different he-
lix indices obtained by SBTM and SBTN. As it is shown in these fig-

ures decreasing the spring index, the difference between CBTM and
SBTM increases. The results calculated by SBTM for both the max-
imum shear stress and the martensitic volume fraction deviate
more than 5% from the CBTM results for the helix indices smaller
than 5. This difference increases considerably for the calculated
maximum shear stress for spring indices smaller than 2.12 for
which CBTM predicts completion of phase transformation and a
sharp increase in the shear maximum stress in the cross section.

The analysis of maximum shear stress as a function of geomet-
ric properties, e.g. the spring index for different spring geometries
can also be used in a design procedure for calculating the critical
geometries for which the maximum shear stress reaches a critical
value. This critical value can be considered as the stress corre-
sponding to the end of reversible stress–strain response for the
SMA material. As an example, if the maximum stress in the
pseudoelastic stress–strain response is smax = 300 MPa, for spring
indices smaller than 2.11, the maximum shear stress is more than
the critical value and elongating the spring more than the consid-
ered value (6 cm) will cause a nonrecoverable overstretching (see
Fig. 17(a)). Similar design graphs can be obtained by the present
formulation for different geometric properties, material properties,
and loading conditions.

7. Conclusions

In this paper two new strategies for analysis of SMA helical
springs subjected to an axial load are presented. One is based on
an exact solution for the pure torsion of a straight SMA bar and
the other considers a curvature correction and uses the torsion of
a curved SMA bar. In addition to the global force–displacement re-
sponse, using the proposed analytical method precise stress and
martensitic volume fraction distributions in the spring cross
section are calculated. SMA helical springs are also analyzed using
a three-dimensional finite element method. An experimental test
is done on a Nitinol spring and the analytical, numerical, and
experimental results are compared. It is shown that the analysis
based on the curved SMA bar torsion theory can predict the stress
and martensitic volume fraction in the cross section accurately.
Using the proposed analytic solution, the SMA helical springs can
be analyzed remarkably faster compared to finite element simula-
tions. Having this solution, the effect of any geometrical or material
property on the spring response can be studied without time lim-
itations even in an optimization process in which a large number of
simulations is required for finding an optimum. The effect of a
change in material properties and the ambient temperature on
the load–displacement response of the SMA helical spring is stud-
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ied and practical recommendations are given for improving these
springs when used as energy absorbing and damping devices. It
is shown that SMA springs made of materials with larger austenite
and martensite elastic moduli and lower specific entropy differ-
ence, are more efficient in dissipating energy. Also it is shown that
for having stiffer springs, SMA materials with larger austenite and
martensite elastic moduli and specific entropy difference should be
used. Because one of the applications of SMA helical springs is en-
ergy absorption in seismic events, it is necessary to study the re-
sponse of these springs to external loads applied with different
rates. For studying the response of SMA helical springs in high
loading rates, the latent heat effect should be considered and a
coupled thermomechanical problem has to be solved.

A comprehensive study of the response of shape memory alloys
by considering the effects of phase transformation induced latent
heat is an important extension of the present work. To analyze
the rate-dependent response of SMAs, in addition to the ambient
condition, one needs to consider the latent heat generation effects.
This will be the subject of a future communication.

Appendix A. Analytical expressions for shear stress in loading
and unloading

In this appendix, an explicit expression for the shear stress is gi-
ven. The coefficients in (19) are
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in which DE = (EM � EA). Using these constants, the following
parameters are introduced:
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The quartic Eq. (19) has four roots. Among these, only one satisfies
the continuity condition for the shear stress distribution in the cross
section. This admissible solution is expressed as:

shz ¼ }�ðr; hÞ ¼ �
1
4

F1 þ
1
2
W � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3a� 2Y � 2

b
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r
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where }+ and }� are solutions for loading and unloading, respec-
tively. In loading, }+(r,h) is calculated by considering the parame-
ters with (+) sign in (A.1) and in unloading }�(r,h) is calculated
by considering the parameters with (�) sign in (A.1).
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