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In this paper, we are concerned with finding exact
solutions for the stress fields of nonlinear solids
with non-symmetric distributions of defects (or
more generally finite eigenstrains) that are small
perturbations of symmetric distributions of defects
with known exact solutions. In the language of
geometric mechanics, this corresponds to finding a
deformation that is a result of a perturbation of
the metric of the Riemannian material manifold. We
present a general framework that can be used for
a systematic analysis of this class of anelasticity
problems. This geometric formulation can be thought
of as a material analogue of the classical small-
on-large theory in nonlinear elasticity. We use the
present small-on-large anelasticity theory to find exact
solutions for the stress fields of some non-symmetric
distributions of screw dislocations in incompressible
isotropic solids.

1. Introduction
Mechanics of residually stressed solids has been of
interest to many researchers in solid mechanics for
quite some time. In an anelastic deformation, any
measure of strain has a non-elastic component. This
means that a non-vanishing strain does not necessarily
correspond to a non-vanishing (conjugate) stress; only
the elastic part of strain—the elastic strain—enters the
constitutive equations. The remaining part of strain is
called pre-strain or eigenstrain as coined by Mura [1].
One source of anelasticity is defects. Line defects in
solids were mathematically introduced by Vito Volterra
more than a century ago [2]. Volterra realized that
such defects, which he called distortions, induce a self-
equilibrated state of residual stresses. His calculations
were done in the setting of linear elasticity. He
introduced six types of line defects, three of which

2016 The Author(s) Published by the Royal Society. All rights reserved.
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are now called dislocations (translational defects) and the other three are called disclinations
(rotational defects). Other examples of anelasticity sources include non-uniform temperature
distributions [3–5], bulk growth [6–10], accretion (surface growth) [11,12] and swelling [13–15].
Following the pioneering works of Eckart [16] and Kondo [17], the multiplicative decomposition
of deformation gradient was proposed by Bilby et al. [18] and Kröner [19] and has been extensively
used in the literature to solve anelasticity problems (see [20,21] for a further discussion on the
origins and the use of the multiplicative decomposition in the mechanics literature). Alternatively,
rather than using the conceptually ambiguous intermediate configuration in the framework of
the multiplicative decomposition (cf. [4,9] for detailed discussions), eigenstrains can be modelled
using an abstract manifold (material manifold) that is possibly non-Euclidean [22,23].

Evolution of defects in solids is an important and difficult problem when strains are finite. The
complexity of the equations of anelasticity leaves little hope for finding exact solutions. A handful
of exact solutions have been found using semi-inverse methods assuming some symmetric classes
of deformations (these are all somewhat related to Ericksen’s universal deformations [24]). In
the case of defects, examples can be seen for dislocations and disclinations in [25–30], and
for point defects and discombinations in [31–33]. The existing exact solutions correspond to
highly symmetric distributions of defects. As soon as this symmetry is broken, the governing
equations start to be utterly complicated leaving no choice but for numerical computations. One
possibility for extending the class of problems amenable to exact solutions is to study those defect
distributions that are perturbations of the highly symmetric ones. This is what we call small-
on-large anelasticity in this paper, which is a material analogue of the small-on-large theory of
Green et al. [34] (further discussion and several applications of this theory can be found in [35,36]).
Given a distribution of some source of anelasticity with a known exact solution, we perturb the
distribution and solve for the induced small elastic deformations. This is achieved by linearizing
the governing equations about the known solution with respect to the perturbation. Even in the
case when one fails to find exact solutions in this framework, the linearized governing equations
are much easier to solve numerically. In this paper, we are concerned with the change of the
state of stress (residual stress) of a hyperelastic body with a given distribution of defects, or
more generally a source of anelasticity, under a perturbation of the defect distribution. A change
of the defect distribution changes the geometry of the material manifold, and consequently
changes the metric of the underlying Riemannian material manifold. Such calculations have
two immediate applications: (i) suppose one has an analytic solution for the stress field of
a given distribution of defects (dislocations, disclinations, point defects or a combination of
them—discombinations [33]). Can one calculate the residual stress field of the body if the defect
distribution is perturbed slightly? (ii) One may be interested in stability of a defect distribution.
If the defect distribution is allowed to perturb, would the total energy of the system change?
Any reduction of the energy of the system may indicate instability of the defect distribution.

This paper is organized as follows. In §2, we briefly review the basic concepts of Riemannian
geometry and geometric elasticity needed in our formulation of small-on-large anelasticity. In §3,
we formulate the governing equations for the small deformations induced by a perturbation of the
distribution of finite eigenstrains. In our geometric framework, such a perturbation is equivalent
to perturbing the material metric. In §4, we solve several examples of screw dislocations that are
perturbations of an axi-symmetric distribution of screw dislocations in an infinite body made of
an incompressible isotropic solid. Conclusion is given in §5.

2. An overview of nonlinear elasticity
We briefly review in the following some elements of the geometric formulation of nonlinear
elasticity and anelasticity. For more details, see, for example, [29,37]. Let B be a three-dimensional
body identified with a three-dimensional Riemannian manifold (B, G)1—the material manifold

1The material manifold need not be Riemannian, e.g. dislocations can be modelled by torsion [29,38], and point defects by
non-metricity [32]. Note, however, that only the underlying Riemannian metric is needed to calculate (residual) stresses.
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where the body is stress-free. Let (S, g) be a Riemannian ambient space manifold, which we
assume is Euclidean, i.e. S = R

3 and g its usual Euclidean metric.2 We adopt the standard
convention to denote objects and indices by uppercase characters in the material manifold B
(e.g. X ∈ B) and by lowercase characters in the spatial manifold S (e.g. x ∈ S). We denote by {XA}
and {xa} the local coordinate charts on B and S, respectively, by ∂A = ∂/∂XA and ∂a = ∂/∂xa, we
denote the corresponding local coordinate bases, respectively, and by {dXA} and {dxa}, we denote
the corresponding dual bases. We also adopt Einstein’s repeated index summation convention,
e.g. uivi :=∑i uivi. Let ∇G, and ∇g be the Levi–Civita connections of (B, G) and (S, g), respectively.
We denote their respective Christoffel symbols by Γ A

BC, and γ a
bc, in the local coordinate charts

{XA} and {xa}. By a configuration of B, we mean a smooth embedding ϕ : B → S. We denote the set
of all configurations of B by C. A motion of B is a smooth curve in C, i.e. a mapping t ∈ R

+ → ϕt ∈ C.
We introduce the notations ϕ(X, t) := ϕX(t) := ϕt(X).

The deformation gradient F is defined as the tangent map of ϕt : B → S, i.e. F(X, t) := Tϕt(X) :
TXB → Tϕt(X)S. We denote the transpose of F by FT and it is defined such that ∀ (W, w) ∈ (TXB ×
Tϕt(X)S) : g(FW, w) = G(W, FTw). In components, (FT)A

a = gabFb
BGAB. The Jacobian J relates the

material and spatial Riemannian volume elements dV(X, G) and dv(x, g) by dv(ϕt(X), g) =
J(X, F, G, g)dV(X, G) . It can be shown that J =√det g/det G det F . The right Cauchy–Green
deformation tensor is defined as C = FTF. In components, CA

B = GAKFa
KFb

Bgab. Note that C�

agrees with the pull-back of the spatial metric g by ϕ, i.e. C� = ϕ∗g, where (.)� denotes the flat
operator for lowering tensor indices. The left Cauchy–Green deformation tensor (also called
Finger tensor) is defined as b = FFT. In components, ba

b = Fa
AFc

BGABgcb. Note that b−� agrees with
the push-forward of the material metric G by ϕ, i.e. b−� = ϕ∗G, where (.)−� denotes the inverse
operator followed by the flat operator. We define the convective manifold as the Riemannian
manifold (B, C�). Let ∇C be the Levi–Civita connection of (B, C�). We denote its corresponding
Christoffel symbols in the local coordinate chart {XA} by Γ̃ A

BC.
The material velocity of the motion is defined as the mapping V : B × R

+ → TS such that
V(X, t) := ϕX∗∂t ∈ TϕX(t)S, which in components reads Va(X, t) = (∂ϕa/∂t)(X, t). The spatial velocity
is defined as the mapping v : ϕt(B) × R

+ → TS such that v(x, t) := V(ϕ−1
t (x), t) ∈ TxS. The material

acceleration is defined as the mapping A : B × R
+ → TS such that A(X, t) := Dg

t V(X, t) ∈ Tϕ(X)S,
where Dg

t denotes the covariant derivative along ϕX. In components, Aa = ∂Va/∂t + γ a
bcVbVc.

The spatial acceleration is defined as the mapping a : ϕt(B) × R
+ → TS such that a(x, t) :=

A(ϕ−1
t (x), t) ∈ TxS. In components, aa = ∂va/∂t + (∂va/∂xb)vb + γ a

bcv
bvc.

We denote the material and spatial mass densities by ρo and ρ, respectively. The conservation
of mass in local form reads ρJ = ρo, which is equivalent to

dρ

dt
+ ρ divgv = 0,

where divg denotes the spatial divergence operator.
We assume that the body is made of a hyperelastic material, so that the constitutive model is

given by an energy function W = W̃(X, F, g, G)3 per unit undeformed volume, and the Cauchy
stress tensor is given by [40]

σ = 2
J

∂W̃
∂g

, (2.1)

which in components reads σ ab = (2/J)(∂W̃/∂gab). We can alternatively consider W = Ŵ(X, C�, G)
and the convected stress tensor Σ = ϕ∗

t σ is written as [41]

Σ = 2
J

∂Ŵ
∂C�

, (2.2)

2See [39] for an example of a non-Euclidean ambient space.

3The dependence of the energy function W̃ on the metrics follows from the fact that W̃ is a scalar that depends on the
deformation gradient F. This requires the metrics to obtain a scalar out of it, e.g. tr(FTF) = Fa

AFb
BGABgab.
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which in components reads Σab = (2/J)(∂Ŵ/∂CAB). If the material is incompressible, we have J = 1
and the stress tensors σ and Σ are written as

σ = 2
∂W̃
∂g

− p g
 and Σ = 2
∂Ŵ
∂C�

− p C−
, (2.3)

where p is the Lagrange multiplier associated with the incompressibility constraint, and (.)−


denotes the inverse operator followed by the sharp operator for raising tensor indices. If the
material is isotropic, the strain-energy function is expressed as a function of the principal
invariants I1 = tr C, I2 = 1

2 (tr(C)2 − tr(C2)), and J, i.e. W = W̄(X, I1, I2, J), and the stress tensors σ

and Σ can be written as [36,40]

σ =
(
W̄J + 2I2

J
W̄I2

)
g
 + 2

J
W̄I1 b
 − 2JW̄I2 b−
 (2.4a)

and

Σ = 2
J

(W̄I1 + I1W̄I2 )G
 − 2
J
W̄I2 C
 + W̄JC−
, (2.4b)

where W̄I1 = ∂W̄/∂I1, W̄I2 = ∂W̄/∂I2, and W̄J = ∂W̄/∂J. If the material is incompressible and
isotropic, one has

σ = (2I2W̄I2 − p)g
 + 2W̄I1 b
 − 2W̄I2 b−
 (2.5a)

and
Σ = 2(W̄I1 + I1W̄I2 )G
 − 2W̄I2 C
 − pC−
. (2.5b)

In spatial form, the balance of linear and angular momenta read

divgσ + ρf = ρa, σ T = σ , (2.6)

where f denotes the body force per unit mass. The balance of linear and angular momenta
in terms of the convected stress tensor read [41]. (Note that, since ∇C = ϕ∗

t ∇G, the convective
balance of momenta (2.7) can alternatively be obtained directly from the classical spatial balance
of momenta (2.6).)

DivCΣ + ρϕ∗
t F= ρϕ∗

t A, ST = S, (2.7)

where DivC denotes the divergence operator with respect to C�, and F := f ◦ ϕt.

3. Small-on-large deformations due to a material metric perturbation
In this section, we formulate a theory of small superposed deformations due to a perturbation of
the material metric. Given a motion ϕt with respect to a reference configuration (B, G), we consider
a 1-parameter family of metrics Gε such that G0 = G. We want to understand how the state of
stress in the body is affected by such a perturbation. Note that a perturbation of the material
metric is due to a perturbation of the source of anelasticity, e.g. a defect density. The variation of
the material metric is defined as

δG := d
dε

∣∣∣
ε=0

Gε .

For a small enough ε, one can write Gε = G + εδG + o(ε). Note that even though the deformation
is seemingly independent of the material metric, changing the material metric may affect the
equilibrium configuration of the body at any given time t. Hence a perturbation of the material
metric may lead to a perturbation ϕt,ε of the motion, such that ϕt,0 = ϕt is the equilibrium
configuration corresponding to the metric G0 = G. We define its corresponding variation as

δϕt(X) := ϕt,X∗∂ε |ε=0 ∈ Tϕt(X)S,

that is, δϕt = δϕa
t ∂a and δϕa

t (X) := dϕX,t/dε|ε=0. Note that δϕ ◦ ϕ−1 is the displacement field in the
classical theory of linear elasticity and we denote it by U = δϕ ◦ ϕ−1. Since S = R

3, using the linear
structure of R

3, one can write for a small enough ε: ϕε = ϕ + εδϕ + o(ε). Given the configuration
ϕ resulting in the stress field σ , the perturbed configuration ϕε due to the material metric
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perturbation Gε induces a stress field, which for a small enough ε reads σ ε = σ + εδσ + o(ε).
In the following, we formulate the governing equations to solve for δϕ and find δσ is terms of
δG and δϕ.

As ε varies, for fixed X and t, the right Cauchy–Green tensor C�
ε remains in the same space

T 2(T∗
XB), the set of

(0
2
)
-rank tensors at X. Thus, it makes sense to define its variation as δC� =

dC�
ε/dε|ε=0. One can write δC� as follows:

δC� = d
dε

C�
ε

∣∣∣∣
ε=0

= ϕ∗
t

d
dε

[ϕt∗ϕ∗
t,εg]

∣∣∣∣
ε=0

= ϕ∗
t LUg = ϕ∗

t (∇gU� + [∇gU�]T) = 2ϕ∗
t ε,

where (.)T denotes the transpose operator, and ε = 1
2 (∇gU� + [∇gU�]T) is the linearized strain.

The variation of the Jacobian of the motion reads4

δJ = d
dε

∣∣∣∣
ε=0

√
det C�

ε

det G
=
(

ε : g
 − 1
2
δG : G


)
J, (3.1)

where ‘:’ denotes the double contraction tensor product. Using ρJ = ρo and (3.1), the variation of
the spatial mass density reads

δρ = −(ε : g
 − 1
2 δG : G
)ρ. (3.2)

Note that when ε varies, the terms in the balance of linear momentum (2.7) are vectors that remain
in the same vector space TXB.5 Hence, one can write its variation as

d
dε

∣∣∣∣
ε=0

[DivCε
Σε + ρεϕ

∗
ε,tB] = d

dε

∣∣∣∣
ε=0

[ρεϕ
∗
ε,tAε],

which, by expanding the divergence term in local coordinates, transforms to read

d
dε

∣∣∣∣
ε=0

[(ΣAB
ε ,B + ΣAK

ε Γ̃ B
ε BK + ΣBK

ε Γ̃ A
ε BK)∂A + ρεϕ

∗
ε,tB] = d

dε

∣∣∣∣
ε=0

[ρεϕ
∗
ε,tAε]. (3.3)

For different values of ε and fixed X and t, Σε lies in the same space T 2(TXB). Hence, one can
define δΣ = dΣε/dε|ε=0, which is computed in (3.4a) following (2.2). On the other hand, the
variation of the Cauchy stress can be defined as the push-forward of that of the convected stress,
i.e. δσ = ϕt∗δΣ . Therefore, one finds

δΣ = 4
J

∂2Ŵ
∂C�∂C�

: ϕ∗
t ε + 2

J
∂2Ŵ

∂G∂C�
: δG −

(
ε : g
 − 1

2
δG : G


)
Σ (3.4a)

and

δσ = 4
J

∂2W̃
∂g∂g

: ε + 2
J

∂2W̃
∂G∂g

: δG −
(

ε : g
 − 1
2
δG : G


)
σ . (3.4b)

We define the following fourth-order elasticity tensors:

C := 4
J

∂2W̃
∂g∂g

and D := 2
J

∂2W̃
∂G∂g

, (3.5)

4Recall that if det A �= 0, one has d det A/dA = (det A) A−T. Here, det G �= 0 and det C� �= 0.

5However, note that when ε varies, the terms in the balance of linear momentum (2.6) are vectors that lie in the vector space
Tϕt,ε (X)S, in which the base point ϕt,ε (X) depends on ε.
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which in components read C
abcd = (4/J)(∂2W̃/∂gab∂gcd) and D

abAB = (2/J)(∂2W̃/∂GAB∂gab).
Using (2.7), (3.2), and (3.4a), the governing equation (3.3) for the incremental stress transforms to6

DivC

(
4
J

∂2Ŵ
∂C�∂C�

: ϕ∗
t ε + 2

J
∂2Ŵ

∂G∂C�
: δG

)
− dB

(
ε : g
 − 1

2
δG : G


)
· Σ

− 2ΣBKC−ALϕ∗
t ε|LMΓ̃ M

BK∂A + ΣBKC−AL[ϕ∗
t ε|BL,K + ϕ∗

t ε|KL,B − ϕ∗
t ε|BK,L]∂A

− 2ΣAKC−BLϕ∗
t ε|LMΓ̃ M

BK∂A + ΣAKC−BL[ϕ∗
t ε|BL,K + ϕ∗

t ε|KL,B − ϕ∗
t ε|BK,L]∂A

+ ρ
d
dε

[ϕ∗
ε,tB]

∣∣∣∣
ε=0

= ρ
d
dε

[ϕ∗
ε,tAε]

∣∣∣∣
ε=0

, (3.6)

where dB denotes the exterior derivative operator on B, i.e. for a function f : B → R, one has
dBf = (∂f/∂XA) dXA. Denoting by a double stroke (.)‖ the convective covariant derivative, i.e. the
covariant derivative in the convective manifold (B, C), one can write (ϕ∗

t ε)BL,K + (ϕ∗
t ε)KL,B −

(ϕ∗
t ε)BK,L = (ϕ∗

t ε)BL‖K + (ϕ∗
t ε)KL‖B − (ϕ∗

t ε)BK‖L + 2(ϕ∗
t ε)LMΓ̃ M

BK. One can also show that

C−BL[(ϕ∗
t ε)BL‖K + (ϕ∗

t ε)KL‖B − (ϕ∗
t ε)BK‖L]

= [C−BL(ϕ∗
t ε)BL‖K + C−BL(ϕ∗

t ε)KL‖B − C−BL(ϕ∗
t ε)BK‖L]

= [(C−1 : ϕ∗
t ε),K + C−IJ(ϕ∗

t ε)KJ||I − C−JI(ϕ∗
t ε)JK‖I] = (g
 : ε),K.

On the other hand, one has dB(ε : g
) · Σ = (g
 : ε),KΣKA∂A. Therefore, (3.6) is simplified to read

DivC

(
4
J

∂2Ŵ
∂C�∂C�

: ϕ∗
t ε + 2

J
∂2Ŵ

∂G∂C�
: δG

)
+ dB

(
1
2
δG : G


)
· Σ

+ ΣBKC−AL[ϕ∗
t ε|BL||K + ϕ∗

t ε|KL‖B − ϕ∗
t ε|BK‖L]∂A + ρ

d
dε

[ϕ∗
ε,tB]

∣∣∣∣
ε=0

= ρ
d
dε

[ϕ∗
ε,tAε]

∣∣∣∣
ε=0

. (3.7)

Recall that, ∇C = ϕ∗
t ∇g . Thus, one can write

(ϕ∗
t ε)AB‖C = Fa

AFb
BFc

Cεab|c = 1
2 Fa

AFb
BFc

C(Ua|bc + Ub|ac).

Assuming that the ambient space is flat, it follows that Ua|bc = Ua|cb. Hence, it is straightforward
to show that (ϕ∗

t ε)BL‖K + (ϕ∗
t ε)KL‖B − (ϕ∗

t ε)BK‖L = Fb
BFk

KFl
LUl|bk. For the acceleration vector, one

has

d
dε

[ϕ∗
ε,tAε]

∣∣∣∣
ε=0

= ϕ∗
t LUA = ϕ∗

t

[
∂Aa

ε

∂ε

∣∣∣∣
ε=0

∂a + ∇g
UA − ∇g

AU
]

= ϕ∗
t [Dg

εA − ∇g
AU]

= ϕ∗
t [Dg

εDg
t V − ∇g

AU] = ϕ∗
t [Dg

t Dg
εV + ∇g

[U,V]V − ∇g
AU]

= ϕ∗
t [Dg

t Dg
t U + ∇g

[U,V]V − ∇g
AU],

where Dg
ε denotes the covariant derivative along ε → ϕε,t(X), for X and t fixed, and where we used

Dg
ε Dg

t V = Dg
t Dg

εV + ∇g
[U,V]V , since we assume a flat ambient space. We also use the symmetry

lemma [42] to write Dg
ε V = Dg

t U. For the body force vector, one similarly has (d/dε)[ϕ∗
ε,tB]|ε=0 =

ϕ∗
t LUB = ϕ∗

t [∇g
UB − ∇g

BU]. Finally, using the above results and pushing forward (3.7) by ϕt, one
obtains the following balance of linear momentum for the perturbed motion:

divg(C : ε + D : δG) + ϕt∗dB( 1
2 δG : G
) · σ

+ ∇g∇gU : σ + ρ(∇g
UB − ∇g

BU) = ρ(Dg
t Dg

t U + ∇g
[U,V]V − ∇g

AU), (3.8)

where ∇g∇gU : σ = σ ab∇g
∂a

∇g
∂b

U = σ abUc
|ba∂c. If the material is incompressible, the variation of the

convected and the Cauchy stress tensors are written as

δΣ = ϕ∗
t (C : ε + D : δ) − δp C−
 + 2pϕ∗

t ε
 (3.9a)

6Recall that the Christoffel symbols for the convective Levi–Civita connection, i.e. the Levi–Civita connection for the

convective manifold (B, C�), read Γ̃ A
BC = 1

2 C−AL(CBL,K + CKL,B + CBK,L).
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and

δσ = C : ε + D : δG − δp g
 + 2pε
, (3.9b)

where δp = d/dε|ε=0 pε is the resulting pressure variation, which can also be interpreted as the
Lagrange multiplier associated with the constraint δJ = 0. Therefore, for an incompressible solid,
the balance of linear momentum for the perturbed motion reads

divgδσ + ϕt∗dB( 1
2 δG : G
) · σ + ∇g∇gU : σ + ρ(∇g

UB − ∇g
BU)

= ρ(Dg
t Dg

t U + ∇g
[U,V]V − ∇g

AU). (3.10)

Remark 3.1. Note that for an isotropic solid, one can show that the components of the elasticity
tensors (3.5) read

C
abcd =

(
W̄J + JW̄JJ + 4I2W̄I2J + 4I2

J
W̄I2 + 4I2

2
J

W̄I2I2

)
gabgcd + 4

J
W̄I1I1 babbcd

−
(
W̄J + 2I2

J
W̄I2

)
(gacgbd + gadgbc) +

(
2W̄I1J + 4I2

J
W̄I1I2

)
(gabbcd + babgcd)

− J(2JW̄I2J + 4W̄I2 + 4I2W̄I2I2 )(gabb−cd + b−abgcd) + 4J3W̄I2I2 b−abb−cd

+ 2JW̄I2 (b−acgbd + b−adgbc + b−bcgad + b−bdgac) − 4JW̄I1I2 (b−abbcd + babb−cd) (3.11a)

and

D
abAB = −

(
1
2
W̄J + J

2
W̄JJ + 2I2W̄I2J + 2I2

J
W̄I2 + 2I2

2
J

W̄I2I2

)
gabGAB

− 1
J
W̄I1 (Fa

KFb
LGAKGBL + Fb

KFa
LGAKGBL) − 2J3W̄I2I2 b−abC−AB

+ J(JW̄I2J + 2W̄I2 + 2I2W̄I2I2 )(b−abGAB + gabC−AB) − 2
J
W̄I1I1 babCAB

+ 2JW̄I1I2 (b−abCAB + babC−AB) −
(
W̄I1J + 2I2

J
W̄I1I2

)
(babGAB + gabCAB)

− JW̄I2 (gakgblF−A
kF−B

l + gbkgalF−A
kF−B

l). (3.11b)

For an incompressible isotropic solid, the components of the elasticity tensors can be obtained
from (3.11) by setting J = 1 and removing the terms containing W̄J .

4. Examples ofmaterialmetric perturbations in an infinitely long cylindrical bar
with an axi-symmetric distribution of parallel screw dislocations

In this section, we solve examples of perturbed dislocation distributions. Starting from a
dislocation distribution with an existing equilibrium solution, we perturb it and solve for
the induced small elastic deformations due to the resulting material metric perturbation. We
consider the example of a cylindrically symmetric distribution of parallel screw dislocations
in a cylinder made of an incompressible, isotropic and radially inhomogeneous nonlinear
elastic solid, i.e. a solid with an energy function that can be written as W = W̄(R, I1, I2).
Using the geometric theory of nonlinear dislocation mechanics introduced in [29], we first
construct the stress-free Weitzenböck material manifold for an arbitrary cylindrically symmetric
parallel screw-dislocations distribution. Next, considering a perturbation of the axi-symmetric
dislocation distribution following §3, we solve for the induced small elastic deformations and the
corresponding stress field.
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(a) Material metric perturbation
In a cylindrical coordinate system (R, Θ , Z), we consider a distribution of cylindrically symmetric
screw dislocations parallel to the Z-axis by assuming a Z-oriented radially symmetric Burgers’
vector density b = b(R). Let us consider a perturbation of this Burgers’ vector distribution,
i.e. we take a one-parameter family of Burgers’ vectors bε(R, Θ , Z) such that b0(R, Θ , Z) = b(R).
We define its variation as δb = (d/dε)bε |ε=0. The given distribution of Burgers’ vectors is
equivalent to having the following torsion 2-forms:

T 1 = T 2 = 0 and T 3
ε = bε(R, Θ , Z)

2π
ϑ1 ∧ ϑ2.

Following the method of Cartan’s moving frames [43], we look for an orthonormal coframe
field of the form ϑ1 = dR, ϑ2 = R dΘ , ϑ3 = dZ + fε(R, Θ , Z) dΘ , for some function fε = fε(R, Θ , Z)
to be determined. Denoting by ωα

β the connection 1-forms, Cartan’s first structural equations,
T α = dϑα + ωα

β ∧ ϑβ , for α = 1, 2, 3, give one the following non-zero connection coefficients:

ω1
22 = − 1

R
, ω1

32 = −1
2

(
fε,R

R
− bε

2π

)
, ω2

13 = ω3
21 = 1

2

(
fε,R

R
− bε

2π

)
, and ω2

33 = fε,Z

R
.

Hence, the connection 1-forms read

ω1
2 = − 1

R
ϑ2 − 1

2

(
fε,R

R
− bε

2π

)
ϑ3, ω2

3 = 1
2

(
fε,R

R
− bε

2π

)
ϑ1 + fε,Z

R
ϑ3,

and ω3
1 = 1

2

(
fε,R

R
− bε

2π

)
ϑ2.

Cartan’s second structural equations, Rα
β = dωα

β + ωα
γ ∧ ωγ

β , for α, β = 1, 2, 3, along with the
flatness of the material manifold yield,7 fε,R = R(bε/2π ), fε,Z = 0. Therefore, bε,Z = 0, and hence
bε = bε(R, Θ), i.e. a Z-dependent Burgers’ vector cannot be accommodated using the assumed
coframe field. It then follows that fε(R, Θ) = (1/2π )

∫R
0 ξbε(ξ , Θ) dξ , and the perturbed material

metric in the coordinate frame is written as

Gε =

⎛
⎜⎜⎝

1 0 0

0 R2 + f 2
ε (R, Θ) fε(R, Θ)

0 fε(R, Θ) 1

⎞
⎟⎟⎠ .

Hence, the variation of the material metric is written as

δG =

⎛
⎜⎜⎝

0 0 0

0 2f (R)δf (R, Θ) δf (R, Θ)

0 δf (R, Θ) 0

⎞
⎟⎟⎠ ,

where

f (R) = 1
2π

∫R

0
ξb(ξ ) dξ and δf (R, Θ) = 1

2π

∫R

0
ξδb(ξ , Θ) dξ .

Knowing that b0 = b(R), we have f0 = f (R) = (1/2π)
∫R

0 ξb(ξ ) dξ and G0 = G(R) is the metric for the
axi-symmetric parallel screw dislocations

G =

⎛
⎜⎜⎝

1 0 0

0 R2 + f 2(R) f (R)

0 f (R) 1

⎞
⎟⎟⎠ .

Note that tr (δG) = δG : G
 = 0.

7For dislocations, the material manifold is by construction a Weitzenböck manifold, i.e. it is flat and has a compatible
connection with a possibly non-zero torsion [38].
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(b) Stress perturbation
Let us first find the residual stress field for the finite axi-symmetric distribution assuming an
incompressible isotropic solid. Based on the symmetry of the problem, we look for an embedding
of the material manifold in the Euclidean ambient space such that, in cylindrical coordinates
(r, θ , z), we have ϕ(R, Θ , Z) = (r(R), Θ , Z). Then, the deformation gradient reads F = diag(r′(R), 1, 1)
and the Jacobian is written as J = rr′/R. Using the incompressibility condition, i.e. J = 1, and
assuming that r(0) = 0 to fix the rigid body translation of the body, we find that r(R) = R. Hence,
the standard Euclidean metric for S = R

3 in cylindrical coordinates (r, θ , z) reads g = diag(1, R2, 1)
and the only non-zero Christoffel symbols are γ r

θθ = −R and γ θ
rθ = 1/R. The Finger deformation

tensor is written as

b
 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0

0
1

R2 − f (R)
R2

0 − f (R)
R2 1 + f 2(R)

R2

⎞
⎟⎟⎟⎟⎟⎠ .

Following (2.5a) and denoting α(R) = 2W̄I1 (R, I1(R), I2(R)) and β(R) = 2W̄I2 (R, I1(R), I2(R)), the non-
zero Cauchy stress components read

σ rr = −p(R, Θ , Z) + α(R) +
(

f 2(R)
R2 + 2

)
β(R), σθθ = 1

R2

[−p(R, Θ , Z) + α(R) + 2β(R)
]

,

σ zz = −p(R, Θ , Z) +
(

f 2(R)
R2 + 1

)
α(R) +

(
f 2(R)

R2 + 2

)
β(R), and σθz = − f (R)

R2 [α(R) + β(R)].

Note that I1(R) = I2(R) = 3 + f 2(R)/R2. The θ and z-equilibrium equations imply that p = p(R),
and the radial equilibrium equation is simplified to read σ rr

,R + (1/R)σ rr − Rσθθ = 0. Assuming
a traction-free boundary condition on the boundary of the cylinder at R = Ro, we solve the above
equation for p = p(R) and it follows that the non-zero Cauchy stress components are:

σ rr =
∫Ro

R

f 2(ξ )
ξ3 β(ξ ) dξ , σθθ = 1

R2

[∫Ro

R

f 2(ξ )
ξ3 β(ξ ) dξ − f 2(R)

R2 β(R)

]
,

σ zz =
∫Ro

R

f 2(ξ )
ξ3 β(ξ ) dξ + f 2(R)

R2 α(R), and σθz = − f (R)
R2 [α(R) + β(R)].

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.1)

Next we formulate the governing equations for superposed small elastic deformation
and compute the incremental deformation and residual stresses due to the perturbation δb.
In cylindrical coordinates (r, θ , z), we look for solutions of the form δϕ(R, Θ) = U(R, Θ) =
(δr(R, Θ), δθ (R, Θ), δz(R, Θ)). Hence, ∇gU reads

Ua|b =

⎛
⎜⎜⎜⎝

δr,R δr,Θ − Rδθ 0

δθ,R + δθ

R
δθ,Θ + δr

R
0

δz,R δz,Θ 0

⎞
⎟⎟⎟⎠ .

Recalling that the linearized strain reads ε = 1
2 (∇gU� + [∇gU�]T), one can write

ε =

⎛
⎜⎜⎜⎜⎜⎜⎝

δr,R
1
2

(δr,Θ + R2δθ,R)
1
2
δz,R

1
2

(δr,Θ + R2δθ,R) R2
(

δθ,Θ + 1
R

δr
)

1
2
δz,Θ

1
2
δz,R

1
2
δz,Θ 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Note that δG : G
 = 0, and hence, the incompressibility condition δJ = 0 using (3.1) is simplified to
read

1
R

(Rδr),R + δθ,Θ = 0. (4.2)

In the absence of body forces, the equilibrium equation (3.8) simplifies to read

divgδσ + ∇g∇gU : σ = 0, (4.3)

where we recall that δσ = (C : ε + D : δG − δp g
 + 2p ε
), δp = δp(R, Θ) is the Lagrange multiplier
associated with the incompressibility condition δJ = 0 (4.2), and p = p(R) is the Lagrange
multiplier associated with the incompressibility condition J = 1. Note that ∇g∇gU can be written
in local coordinates as

Ua|bc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

δr,RR

−Rδθ,R − δr,Θ

R
+ δr,RΘ

0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

−Rδθ,R − δr,Θ

R
+ δr,RΘ

−2Rδθ,Θ + δr,ΘΘ + Rδr,R − δr

0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

0

0

0

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

2δθ,R

R
+ δθ,RR

Rδr,R − δr
R2 + δθ,RΘ

0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

Rδr,R − δr
R2 + δθ,RΘ

δθ,ΘΘ + Rδθ,R + 2δr,Θ

R
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

0

0

0

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

δz,RR

− δz,Θ

R
+ δz,RΘ

0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

− δz,Θ

R
+ δz,RΘ

δz,ΘΘ + Rδz,R

0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

0

0

0

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.4)

For the sake of simplifying the calculations, let us assume that the body is made of a generalized
neo-Hookean solid, i.e. the energy function has the form W = W̄(I1). Hence, it follows from (4.1)
that the Cauchy stress reads:

σ =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0

0 0 −2
f (R)
R2 W̄I1

0 −2
f (R)
R2 W̄I1 2

f 2(R)
R2 W̄I1

⎞
⎟⎟⎟⎟⎟⎠ . (4.5)

Thus, recalling that ∇g∇gU : σ = Ua|bcσ
bc∂a, one finds from (4.4) and (4.5) that ∇g∇gU : σ = 0.

In addition, following (3.11), the elasticity tensors simplify to

C : ε = 4W̄I1I1 (b
 : ε)b
 and D : δG = −2W̄I1I1 (C
 : δG)b
 − 2W̄I1ϕt∗δG
. (4.6)

However, using the incompressibility condition (4.2), we have b
 : ε = (1/R)(Rδr),R + δθ,Θ −
( f/R2)δz,Θ = −( f/R2)δz,Θ . Therefore,

C : ε = 1
R4

⎛
⎜⎜⎝

−4R2fW̄I1I1δz,Θ 0 0

0 −4fW̄I1I1δz,Θ 4f 2W̄I1I1δz,Θ

0 4f 2W̄I1I1δz,Θ −4f (R2 + f 2)W̄I1I1δz,Θ

⎞
⎟⎟⎠ .
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On the other hand, C
 : δG = −2( f/R2)δf , and one can easily obtain

D : δG =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
R2 W̄I1I1 f δf 0 0

0
4

R4 W̄I1I1 f δf −2

(
1

R2 W̄I1 + 2f 2

R4 W̄I1I1

)
δf

0 −2

(
1

R2 W̄I1 + 2f 2

R4 W̄I1I1

)
δf 4

( ¯1
R2 W I1

+ R2 + f 2

R4 W̄I1I1

)
f δf

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, the equilibrium equations (4.3) simplify to read

divgδσ = 0, (4.7)

where

δσ rr = 4fW̄I1I1

R2 (δf − δz,Θ ) + 4W̄I1δr,R − δp, δσ rθ = 2W̄I1

(
δr,Θ

R2 + δθ,R

)
,

δσ θθ = 4fW̄I1I1

R4 (δf − δz,Θ ) − 1
R2 (δp + 4W̄I1δr,R),

δσ θz = −2(2f 2W̄I1I1 + R2W̄I1 )
R4 (δf − δz,Θ ), δσ rz = 2W̄I1δz,R,

and δσ zz = 4f
R2 [(W̄I1 + W̄I1I1 )δf − W̄I1I1δz,Θ ] + 4f 3W̄I1I1

R4 (δf − δz,Θ ) − δp.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.8)

Writing (4.7) in components along with the incompressibility condition (4.2) gives the following
system of partial differential equations:

∂

∂R

[
4fW̄I1I1

R2 δz,Θ − 4W̄I1δr,R + δp
]

− 2W̄I1

R2 [4Rδr,R + δr,ΘΘ + R2δθ,RΘ ] = ∂

∂R

[
4fW̄I1I1

R2 δf
]

, (4.9a)

∂

∂R

[
2W̄I1

R2 (δr,Θ + R2δθ,R)
]

− 4fW̄I1I1

R4 δz,ΘΘ

+ 2W̄I1

R3 [3δr,Θ − 2Rδr,RΘ + 3R2δθ,R] − 1
R2 δp,Θ = −4fW̄I1I1

R4 δf,Θ , (4.9b)

∂

∂R
[2W̄I1δz,R] + 2W̄I1

R
δz,R

+ 4f 2W̄I1I1 + 2R2W̄I1

R4 δz,ΘΘ =
[

4f 2W̄I1I1

R4 + 2W̄I1

R2

]
δf,Θ , (4.9c)

and δr + Rδr,R + Rδθ,Θ = 0. (4.9d)

The boundary conditions corresponding to zero incremental boundary traction read δσ rr(Ro, Θ) =
0, δσ rθ (Ro, Θ) = 0, and δσ rz(Ro, Θ) = 0, which following (4.8) can be written as:[

4W̄I1δr,R − 4fW̄I1I1

R2 δz,Θ − δp
]

(Ro,Θ)
= −

[
4fW̄I1I1

R2 δf
]

(Ro,Θ)
, (4.10a)

[
δr,Θ

R2 + δθ,R

]
(Ro,Θ)

= 0, (4.10b)

and δz,R(Ro, Θ) = 0. (4.10c)

To fix the rigid body motion of the cylinder, we assume that

δr(0, Θ) = 0, δθ (0, Θ) = 0, and δz(0, Θ) = 0. (4.11)
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Note that the continuity of the traction across any radial plane of constant Θ gives δσ θz(R, Θ) =
δσ θz(R, Θ + 2π ), δσ θθ (R, Θ) = δσ θθ (R, Θ + 2π ), and δσ θr(R, Θ) = δσ θr(R, Θ + 2π ). In addition,
to preserve the structural integrity of the cylinder, one must have δr(R, Θ) = δr(R, Θ + 2π ),
δθ (R, Θ) = δθ (R, Θ + 2π ), and δz(R, Θ) = δz(R, Θ + 2π ). Thus, it follows that δr, δθ , δz, and δp are
2π -periodic functions with respect to Θ .

Note that δz = δz(R, Θ) can be obtained from (4.9c). Given the solution δz = δz(R, Θ) for (4.9c),
we observe that the following functions are the unique solution for the system of linear ordinary
differential equations (4.9) satisfying the boundary conditions (4.10) and (4.11):

δr = 0, δθ = 0, and δp = 4fW̄I1I1

R2 (δf − δz,Θ ). (4.12)

Therefore, following (4.8) and (4.12), the variation of the Cauchy stress tensor reads

δσ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 2W̄I1δz,R

0 0 −
(

2W̄I1

R2 + 4f 2W̄I1I1

R4

)
(δf − δz,Θ )

2W̄I1δz,R −
(

2W̄I1

R2 + 4f 2W̄I1I1

R4

)
(δf − δz,Θ )

4fW̄I1

R2 δf + 4f 3W̄I1I1
R4 (δf − δz,Θ )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(4.13)

Let us first solve (4.9c) for δz = δz(R, Θ) to complete the solution (4.12). Recalling that δz is
2π -periodic with respect to Θ and assuming that δf is periodic as well, we can represent them by
the following Fourier series:

δz =
∞∑

k=−∞
δzk(R)eikΘ and δf =

∞∑
k=−∞

δfk(R)eikΘ , (4.14)

where i = √−1, and for k ∈ Z, δzk and δfk are the complex-valued Fourier coefficients given by

δzk(R) = 1
2π

∫ 2π

0
δz(R, ζ ) e−ikζ dζ and δfk(R) = 1

2π

∫ 2π

0
δf (R, ζ ) e−ikζ dζ . (4.15)

Substituting the Fourier series (4.14) into the partial differential equation (4.9c) for k ∈ Z, we find

2W̄I1δzk
′′ +

[
2

dW̄I1

dR
+ 2W̄I1

R

]
δzk

′ −
[

4f 2W̄I1I1

R4 + 2W̄I1

R2

]
k2δzk =

[
4f 2W̄I1I1

R4 + 2W̄I1

R2

]
ikδfk, (4.16)

where δzk
′ = (dδzk/dR) and δzk

′′ = (d2δzk/dR2). Note that δfk can also be written as δfk =
(1/2π )

∫R
0 ξδbk(ξ ) dξ , where δbk is the kth Fourier coefficient of δb. The boundary conditions for

δz from (4.10) and (4.11) transform in terms of its Fourier coefficients to the following relations:

δzk(0) = 0, δzk
′(Ro) = 0, k ∈ Z. (4.17)

Therefore, we have transformed the real partial differential equation (4.9c) into a set of complex
ordinary differential equations (4.16).

(c) Energy of a perturbed dislocation distribution
We next calculate the change in energy due to a small perturbation of the defect distribution to
the first order in the defect perturbation. For a given distribution of screw dislocations, the energy
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per unit length in a cylinder made of a generalized neo-Hookean solid is written as

W =
∫ 2π

0

∫Ro

0
W(I1(R, Θ))R dR dΘ .

Therefore, the variation of the energy following an arbitrary perturbation δb = δb(R, Θ) is written
as:

δW =
∫ 2π

0

∫Ro

0

dW(I1ε(R, Θ))
dε

∣∣∣∣
ε=0

R dR dΘ =
∫ 2π

0

∫Ro

0
WI1 (I1(R, Θ))δI1(R, Θ))R dR dΘ .

Note that δI1 = 2ε : b
 + δG : C
 = (2f (R)/R2)[δf (R, Θ) − δz,Θ (R, Θ)]. Therefore8

δW =
∫Ro

0

∫ 2π

0

2f (R)
R

WI1 (I1(R))δf (R, Θ) dΘ dR. (4.18)

Remark 4.1. Note that (4.18) can be written as

δW =
∫Ro

0

4π f (R)
R

WI1 (I1(R))δf0(R) dR, (4.19)

where δf0(R) = (1/2π)
∫2π

0 δf (R, Θ) dΘ is the angular mean value of δf . On the other hand, one can
write

δf0(R) = 1
2π

∫ 2π

0
δf (R, Θ) dΘ = 1

2π

∫ 2π

0

1
2π

∫R

0
ξδb(ξ , Θ) dξ dΘ = 1

2π

∫R

0
ξδb0(ξ ) dξ ,

where

δb0(R) = 1
2π

∫ 2π

0
δb(R, Θ) dΘ . (4.20)

Hence, the energy variation depends only on δb0(R)—the angular mean value of the perturbation
δb(R, Θ).

(d) Perturbed dislocations in incompressible neo-Hookean solids
Let us consider an incompressible homogeneous neo-Hookean solid, i.e. W̄(I1) = (μ/2)(I1 − 3),
where μ is the shear modulus for infinitesimal strains, and an arbitrary perturbation δb = δb(R, Θ).

Remark 4.2. Note that even though the energy per unit length along a single screw dislocation
line in a neo-Hookean solid is unbounded as shown in [25] (see also [44]), energy is not necessarily
unbounded for distributed screw dislocations. In particular, for a radially symmetric distribution
of screw dislocations, the energy per unit length in a neo-Hookean solid is written as

W = 2π

∫Ro

0

μ

2
(I1(ξ ) − 3)ξ dξ = πμ

∫Ro

0

f 2(ξ )
ξ

dξ .

Let us assume, as an example for computing the energy, the following Burgers’ vector
distribution:

b(R) =
{

bi 0 < R ≤ Ri,

0 Ri < R ≤ Ro,
(4.21)

where Ri ≤ Ro is the radius of a cylinder made of a solid with a uniform Burgers’ vector bi, while
the hollow cylinder Ri < R ≤ Ro is dislocation-free. Thus, one finds

f (ξ ) = 1
2π

∫ ξ

0
ζb(ζ ) dζ =

⎧⎪⎪⎨
⎪⎪⎩

biξ
2

4π
0 ≤ ξ ≤ Ri,

biR2
i

4π
Ri < ξ ≤ Ro.

(4.22)

8Note that since δz = δz(R, Θ) is periodic with respect to Θ , one has
∫2π

0 δz,Θ (R, Θ) dΘ = δz(R, 2π) − δz(R, 0) = 0.
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Therefore,

W = πμ

∫Ri

0

1
ξ

(
biξ

2

4π

)2

dξ + πμ

∫Ro

Ri

1
ξ

(
biR2

i
4π

)2

dξ = μb2
i R4

i
64π

[
1 + 4 log

(
Ro

Ri

)]
< ∞.

In the following computation, we consider an arbitrary radially symmetric Burgers’ vector
distribution b = b(R) and an arbitrary perturbation δb = δb(R, Θ). For a neo-Hookean solid, the
ordinary differential equations (4.16) for k ∈ Z simplify and read

R2δzk
′′ + Rδzk

′ − k2δzk = ikδfk. (4.23)

Solving (4.23), one finds that for k ∈ Z

δzk(R) = R2k + R2k
o

2RkRk
o

[
ck + i

∫ 1

R
Ro

(ξ k − ξ−k)δfk(Roξ )
2ξ

dξ

]

+ R2k − R2k
o

2RkRk
o

[
dk − i

∫ 1

R/Ro

(ξ k + ξ−k)δfk(Roξ )
2ξ

dξ

]
, (4.24)

for some complex constants ck and dk. By using the boundary condition (4.17) δzk
′(Ro) = 0, it

follows that dk = 0. We observe that ck = δzk(Ro), and from (4.15), one observes that δz−k = δz∗
k .9

Thus, c−k = c∗
k . In addition, note that δf−k = δf ∗

k . Therefore, following (4.24) and by using (4.14), it
follows that:

δz(R, Θ) = c0 +
∞∑

k=1

R2k + R2k
o

2RkRk
o

[
2(�(ck) cos(kΘ) − �(ck) sin(kΘ))

−
∫ 1

R/Ro

(ξ k − ξ−k)(�[δfk(Roξ )] sin(kΘ) + �[δfk(Roξ )] cos(kΘ))
ξ

dξ

]

+
∞∑

k=1

R2k − R2k
o

2RkRk
o

∫ 1

R/Ro

(ξ k + ξ−kt)(�[δfk(Roξ )] sin(kΘ) + �[δfk(Roξ )] cos(kΘ))
ξ

dξ ,

(4.25)

where �(z) and �(z) denote the real and imaginary parts of a complex number z, respectively.
Note that since δfk(R) = (1/2π )

∫2π
0 δf (R, ζ ) e−ikζ dζ , one can write

�[δfk(R)] = 1
2π

∫ 2π

0
δf (R, Θ) cos(kΘ) dΘ and �[δfk(R)] = − 1

2π

∫ 2π

0
δf (R, Θ) sin(kΘ) dΘ .

Remark 4.3. Note that for a neo-Hookean solid, the incremental deformation is independent
of the finite radially symmetric dislocation distribution b = b(R). Indeed, the governing
equation (4.23) holds for any b = b(R). However, as can be seen in (4.13), the incremental stress
field, and in particular δσ zz, depends on the initial dislocation distribution.

Let us now simplify the solution (4.25) for a particular Burgers’ vector perturbation given by

δb(R, Θ) = δb0(R) + R
Ro

(
1 − R

Ro

)2
[b1 cos Θ + b2 sin Θ], (4.26)

for some R-dependent function δb0 = δb0(R), and constants b1 and b2. Note that the only non-zero
Fourier coefficients of δb in (4.26) are δb0, δb1, and δb−1. For k = −1, 1, one finds

δbk(R) = 1
2

(b1 − ikb2)
R
Ro

(
1 − R

Ro

)2
.

9We denote by x∗ the complex conjugate of a complex number x.
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Figure 1. Visualization of the solution (4.29) for a cylinder of radius Ro with b1Ro = 15 and b2Ro = 10. (a) Three-dimensional
visualization of the deformation of a cross section of the cylinder. (b) Profile of deformation of different radial lines. (Online
version in colour.)

Therefore, the only non-zero Fourier coefficients of δf are δf0, δf1, and δf−1. They read

δf0(R) = 1
2π

∫R

0
ξδb0(ξ ) dξ and δfk(R) = b1 − ikb2

4π

(
R5

5R3
o

− R4

2R2
o

+ R3

3Ro

)
for k = −1, 1. (4.27)

First, note that following (4.24), for k �= −1, 1 one obtains δzk(R) = ck((R2k + R2k
o )/2RkRk

o). However,
as we are looking for a solution that is bounded, it follows that for k �= −1, 0, 1, one has ck = 0. Thus,
one finds following (4.25) that

δz(R, Θ) = c0 − b1(R − Ro)2(R4 − 2RoR3 + 2R3
oR + R4

o) + 240π�(c1)R2
o(R2 + R2

o)

240πR3
oR

sin Θ

+ b2(R − Ro)2(R4 − 2RoR3 + 2R3
oR + R4

o) + 240π�(c1)R2
o(R2 + R2

o)

240πR3
oR

cos Θ . (4.28)

Furthermore, to ensure that (4.28) is bounded, one must have b1R2
o + 240π�(c1) = 0 and b2R2

o +
240π�(c1) = 0. Thus, �(c1) = −b1R2

o/(240π ) and �(c1) = −b2R2
o/(240π ). Next, by enforcing the

boundary condition (4.17) δz(0, Θ) = 0 to fix the rigid body motion, one finds c0 = 0. Therefore,
it follows that

δz(R, Θ) = b2 cos Θ − b1 sin Θ

240πR3
o

R(R4 − 4R3Ro + 5R2R2
o − 4R4

o). (4.29)

In figure 1, we plot the solution (4.29) for a cylinder of radius Ro subject to a perturbation (4.26)
such that b1Ro = 15 and b2Ro = 10. Note that the numerical values shown in figure 1 should
be multiplied by a small ε to give the incremental deformation. Given that z = Z for the finite
dislocation distribution, the total deformation reads: zε = Z + εδz + o(ε). Recall, as noted earlier,
that the state of deformation of a cylinder made of a neo-Hookean solid is independent of b = b(R);
it only depends on the perturbation—compare this to example §4e, where the deformation of a
cylinder made of a power law material actually depends on the finite dislocation distribution
b = b(R).
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Using (4.1) and (4.13), one finds the following total stress in the perturbed configuration (recall
that the total stress in the perturbed configuration for a small enough ε is σ ε = σ + εδσ + o(ε).)

σ ε =

⎛
⎜⎜⎜⎜⎜⎝

0 0 εμδz,R

0 0 −μ
f (R)
R2 − ε

μ

R2 (δf − δz,Θ )

εμδz,R −μ
f (R)
R2 − ε

μ

R2 (δf − δz,Θ ) μ
f 2(R)

R2 + ε
2μ

R2 f δf

⎞
⎟⎟⎟⎟⎟⎠+ o(ε),

where

δf = 1
2π

∫R

0
ξδb0(ξ ) dξ +

(
R5

5R3
o

− R4

2R2
o

+ R3

3Ro

)
b1 cos Θ + b2 sin Θ

2π
,

δz,R = (5R4 − 16R3Ro + 15R2R2
o − 4R4

o)
b1 sin Θ − b2 cos Θ

240πR3
o

,

δf − δz,Θ = 1
2π

∫R

0
ξδb0(ξ ) dξ + R(23R4 − 56R3Ro + 35R2R2

o + 4R4
o)

b1 cos Θ + b2 sin Θ

240πR3
o

.

Let us now compute the variation of the energy due to a dislocation distribution perturbation.
Following (4.19), one has

δW =
∫Ro

0

2πμ

R
f (R)δf0(R) dR.

Assuming the finite dislocation distribution (4.21), the variation of the energy reads

δW =
∫Ri

0

μbiR
4π

∫R

0
ξδb0(ξ ) dξ dR +

∫Ro

Ri

μbiR2
i

4Rπ

∫R

0
ξδb0(ξ ) dξ dR.

Let us assume that the total Burgers’ vector of the perturbation is zero so that the perturbation
does not change the total Burgers’ vector of the original finite dislocation distribution b(R),
i.e.

∫Ro
0

∫2π
0 Rδb(R, Θ) dΘ dR = 0. In terms of the angular mean value of the perturbation this is

written as
∫Ro

0 Rδb0(R) dR = 0. We consider in particular a Burgers’ vector perturbation such that
its angular mean value—cf. (4.20)—is given by

δb0(R) = 15b0
R
Ro

(
1 − R

Ro

)2 (
1 − 2

R
Ro

)
, (4.30)

for some constant b0. For this perturbation, one obtains

δW = μbibo(35R8
i − 144R7

i Ro + 210R6
i R2

o − 112R5
i R3

o + 14R2
i R6

o)

672πR4
o

.

Note that for any Ri such that 0 < Ri < Ro, the energy variation δW has the same sign as bibo.
For Ri = 0, δW = 0 and δW/(bibo) is monotonically increasing as a function of Ri. In particular, for
Ri > 0, δW �= 0, and hence the initial dislocation distribution is not in equilibrium.

(e) Perturbed dislocations in incompressible power-law solids
Let us consider an arbitrary perturbation δb = δb(R, Θ) in the case of an incompressible power-law
solid for which the energy function is written as

W̄(I1) = μ

2c

{[
1 + c

n
(I1 − 3)

]n
− 1
}

, (4.31)

where μ is the shear modulus for infinitesimal strains, n is a hardening exponent, and c is another
material constant. Based on the work of Knowles [45] on anti-plane shear fields, Rosakis &
Rosakis [26] observed that when n = 1

2 , the energy per unit length along a single screw dislocation
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Figure 2. Visualization of the deformation δz = δz(R,Θ )—solution of (4.32)—of a cylinder of radius Ro with the finite
dislocation distribution (4.21) such that biRo = 25 and Ri/Ro = 0.5, and subject to the Burgers’ vector perturbation (4.26)
such that b1Ro = 15 and b2Ro = 10. (a) Three-dimensional visualization of the deformation of a cross section of the cylinder.
(b) Profile of deformation of different radial lines. (Online version in colour.)

line is finite. We assume in what follows that n = 1
2 and c = 1. For such a power-law material, the

ordinary differential equation (4.16) for k ∈ Z is simplified to read

(2Rf 2 + R3)δzk
′′ + (R2 + 4f 2 − 2Rff ′)δzk

′ − k2Rδzk = ikRδfk, (4.32)

along with the boundary conditions (4.17): δzk(0) = 0, δzk
′(Ro) = 0. In this example, we assume

the Burgers’ vector distribution (4.21) and the Burgers’ vector perturbation (4.26). Therefore, f
and the non-zero Fourier coefficients of δf are again given by (4.22) and (4.27), respectively. We
numerically solve (4.32) and in figure 2 plot the profile of the deformation δz = δz(R, Θ) of a cross
section of a cylinder of radius Ro with the finite dislocation distribution (4.21) such that biRo = 25
and Ri/Ro = 0.5, and subject to the Burgers’ vector perturbation (4.26) such that b1Ro = 15 and
b2Ro = 10.

The total stress in the perturbed configuration is computed following (4.1), and (4.13). Its non-
zero components read. (Recall that f is given by (4.22).)

σ rz
ε = εμ√

2f (R)2/R2 + 1
δz,R + o(ε),

σθz
ε = − μf (R)

R2
√

2f (R)2/R2 + 1

− εμ

⎡
⎣ 1

R2
√

2f (R)2/R2 + 1
− 2f 2

R4
(
2f (R)2/R2 + 1

)3/2

⎤
⎦ (δf − δz,Θ ) + o(ε),

and σ zz
ε = μf 2(R)

R2
√

2f (R)2/R2 + 1
+ ε

2μf

R2
√

2f (R)2/R2 + 1
δf

− ε
2μf 3

R4(2f (R)2/R2 + 1)3/2 (δf − δz,Θ ) + o(ε).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.33)
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The variation of the energy is written as

δW =
∫Ri

0

μbiR

4π

√
b2

i R2/8π2 + 1

∫R

0
ξδb0(ξ ) dξ dR +

∫Ro

Ri

μbiR2
i

4Rπ

√
b2

i R4
i /8π2R2 + 1

∫R

0
ξδb0(ξ ) dξ dR.

Assuming a dislocation perturbation with a vanishing total Burgers’ vector such that its mean
angular value is given by (4.30) one can compute the energy variation and find that it is not zero,
i.e. the initial dislocation distribution is not in equilibrium.

5. Conclusion
In this paper, we introduce a geometric theory of small-on-large anelasticity to study the
induced small deformations due to a perturbation of a given distribution of (finite) eigenstrains
superposed on the finite deformation that corresponds to the original distribution. Given a
nonlinear solid with a given distribution of eigenstrains, a perturbation of the eigenstrains
changes the equilibrium configuration and its state of stress. In the geometric formulation
of anelasticity, a perturbation of the anelasticity source corresponds to a perturbation of the
geometry of the material manifold. We find the incremental residual stresses due to the
perturbation fields and derive the governing equations for the induced small deformations
superposed on the original finite deformation. Finally, to illustrate the capability of the theory,
we consider an axi-symmetric distribution of parallel screw dislocations in an incompressible
isotropic solid and calculate the perturbation fields when the body undergoes an arbitrary small
perturbation in the Burgers’ vector distribution. For generalized neo-Hookean solids, we are able
to reduce the governing equations to a single ordinary differential equation. Furthermore, when
the solid is neo-Hookean, we find a closed-form solution for the governing equations. We also
consider the power-law solid constitutive model for which we solve the governing equations
numerically.
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