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a b s t r a c t

In this paper we first obtain the order of stress singularity for a dynamically propagating
self-affine fractal crack. We then show that there is always an upper bound to roughness,
i.e. a propagating fractal crack reaches a terminal roughness. We then study the phenom-
enon of reaching a terminal velocity. Assuming that propagation of a fractal crack is dis-
crete, we predict its terminal velocity using an asymptotic energy balance argument. In
particular, we show that the limiting crack speed is a material-dependent fraction of the
corresponding Rayleigh wave speed.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

A theoretical framework for including inertial effects during a rapid crack growth was first proposed by Mott [54], who
adopted the analysis of Griffith [39] as a starting point. The idea is based on a simple addition of a kinetic energy term to the
expression for the total energy of the cracked system. According to Mott’s extension of Griffith’s criterion, the requirement
that the system remains in thermodynamic equilibrium with its surroundings as the crack extends leads to the following
expression in terms of the well-known fracture parameters: G � 2c = dT/da, where G is energy release rate, c is specific
surface energy, T is kinetic energy density, and ‘‘a” is the characteristic length of the crack. Mott defined a domain R that
receives stress-wave ‘‘messages” from the crack tip and then argued that the total kinetic energy can be written as
T ¼ 1

2 qv2
R

R½ð@ux=@aÞ2 þ ð@uy=@aÞ2�dxdy. While Mott’s analysis lacks rigour, it is instructive in the way it highlights some
of the important features of a running crack without excessive mathematical complication.

The first important contribution to the problem of a moving crack with constant velocity was the work of Yoffe [89]. The
Yoffe problem consists of a mode I crack of fixed length traveling through an elastic body at a constant speed under the ac-
tion of uniform remote tensile loading. Yoffe [89] obtained the stress distribution near the tip of a rapidly propagating crack
in a plate of isotropic elastic medium. The result was that the stresses depend on the crack tip velocity and reduce to the
solution of Inglis [41] when the velocity is zero.

Roberts and Wells [70] used Mott’s extension of Griffith’s criterion to predict the limiting velocity of the crack extension.
By taking the boundary of the region R to be a circle of radius r centered at the crack tip, they estimated r � c0t, where
c0 ¼

ffiffiffiffiffiffiffiffiffi
E=q

p
is the longitudinal sound wave speed. They defined this cutoff region as the border of the disturbed zone by

the stress waves emanated from the crack tip. Using this assumption and taking a stress field similar to that of the static
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case they roughly estimated the limiting crack velocity to be about 0.38c0 when m = 0.25. Steverding and Lehnigk [77] studied
the problem of the response of cracks to stress pulses and found an equation of motion for such cracks. They also
obtained the limiting velocity of crack extension caused by stress pulses by using asymptotic solutions to be about
0.52cR, where cR is the Rayleigh wave speed. There have also been some other efforts on finding the equation of motion
for dynamically propagating cracks. Berry [8,9] was the first to find an equation of motion for dynamic propagation of cracks.
He found out that the details of the motion of a crack are determined by the state of stress at the point of fracture, and that
the observed critical stress is (infinitesimally) greater than that given by the Griffith’s criterion and is probably determined
by the size of the defect in the sample and the rate of straining. He also obtained solutions for the equation of motion for
fracture in tension and fracture in cleavage in both constant force and constant velocity cases. See Bouchbinder et al. [15]
for a recent review of dynamic fracture mechanics.

The inadequacy of the classical fracture mechanics theories in problems such as predicting infinite strength for elastic
bodies without any cracks, for example, was the motivation for some researchers to propose new failure theories. Novozhilov
[56] introduced a non-local stress criterion and gave the condition of the brittle crack propagation in mode I as
r� � hryðxÞia0

0 ¼ rc , where h:ia0
0 is spatial averaging over the interval [0, a0], ry(x) is the complete (not only asymptotic) stress

field around the crack tip (x = 0), rc is the ideal strength of the material, and a0 is the minimum admissible crack advance
named by him a fracture quantum. According to Novozhilov this criterion can be used only with the complete expression
of the stress field, and not with its asymptotic form. However, the complete expression is rarely known. Another restriction
in Novozhilov’s approach was that the size of fracture quantum assumed to be the atomic spacing. Pugno and Ruoff [60]
introduced their so-called quantized fracture mechanics (QFM) approach, which modified Novozhilov’s theory. In QFM,
the restrictions of Novozhilov’s theory were removed and this made QFM a useful approach for analysis of very short cracks
(see also Krasovs’kyi [43], Morozov and Petrov [52], Cornetti et al. [21], Leguillon [46] for more related works). In their ap-
proach the differentials in Griffith’s criterion were replaced by finite differences (see Wnuk and Yavari [81] for a discussion).
For vanishing crack length, QFM predicts a finite ideal strength in agreement with the prediction of Orowan [57].

In most models in fracture mechanics cracks are assumed to be smooth for mathematical convenience. However, in real-
ity fracture surfaces are rough and ‘‘roughness” evolves in the process of crack propagation. Fracture surfaces of many mate-
rials of interest are fractals, a fact that has been experimentally established by many researchers. A fractal dimension
(roughness exponent) is not enough to uniquely specify a fractal set and this is why all one can hope for achieving having
only a fractal dimension (roughness exponent) is a qualitative analysis. Effects of fractality on fracture characteristics of
rough cracks have been investigated by several groups in the past two decades (see Mosolov [53], Gol’dshte�in and Mosolov
[37], Gol’dshte�in and Mosolov [38], Balankin [6], Borodich [11], Carpinteri [17], Cherepanov et al. [20], Xie [83], Xie [84],
Yavari et al. [85–88], Wnuk and Yavari [79–82], and references therein). Here our interest is to estimate the observed
terminal velocity of a rough crack propagating dynamically in an elastic medium.

Wnuk and Yavari [81] extended quantized (finite) fracture mechanics ideas for fractal cracks. They presented a modifi-
cation of the classical theory of brittle fracture of solids by relating discrete nature of crack propagation to the fractal geom-
etry of the crack. Their work is based on the idea of using an equivalent smooth blunt crack with a finite radius of curvature
at its tips for a given fractal crack [79,80]. By taking the radius of curvature of the equivalent blunt crack as a material prop-
erty, they showed that fractal dimension of the crack trajectory is a monotonically increasing function of the nominal crack
length. This result was an analytical demonstration of the mirror–mist–hackle phenomenon for rough cracks. Later they
showed that assuming a cohesive zone ahead of a fractal crack, the size of the cohesive zone increases while the crack prop-
agates [82].

To our best knowledge, the only contributions related to the dynamic fracture of fractal cracks are Xie [84] and Alves [3].
Xie [84] introduced a fractal kinking model of the crack extension path to describe irregular crack growth. Then by using the
formula proposed by Freund [35] for calculating dynamic stress intensity factor for arbitrary crack tip motion he calculated
the stress intensity factor for the assumed fractal crack path. He concluded that the reason for having terminal velocities
lower than the Rayleigh wave speed is the fractality of the crack path. Alves [3] used a fractal model for rough crack surfaces
in brittle materials. He tried to explain the effect of fractality of fracture surfaces on the stable (quasi-static) and unstable
(dynamic) fracture resistance. He concluded that fractal dimension has a strong influence on the rising of the R-curve in brit-
tle materials. He also argued that the reason for having terminal velocities lower than Rayleigh wave speed is the roughness
of the fracture surfaces that makes the nominal (projected) and local crack tip velocities different.

Dulaney and Brace [27] modified Mott’s analysis of energy balance and showed that for a crack of initial and current

lengths c0 and c, respectively, _c ¼ vLð1� c0=cÞ compared to the similar equation _c ¼ vLð1� c0=cÞ
1
2 obtained by Mott. Here

vL is the terminal velocity and is proportional to
ffiffiffiffiffiffiffiffiffi
E=q

p
. They also carried out tests of terminal velocity on PMMA specimens

and showed that the measured velocity differs only about 10% from the predicted value by Roberts and Wells [70]. Recently,
Chekunaev and Kaplan [18,19] studied the terminal velocity by replacing a mode I crack under pressure on its faces by con-
sidering cohesive forces and replacing the crack by an equivalent distribution of dislocations. They obtained simple expres-
sions for the potential and kinetic energies of the environment of the moving crack. They also obtained an expression for an
equivalent mass for the crack tip, i.e. a point mass that has the same kinetic energy as the whole cracked system. Their equiv-
alent mass depends on a truncation radius R in the form of ln(2R/a), where a is the half crack length. For a uniform external
pressure p0 they showed that the crack tip speed can be expressed as v = vL(1 � acr/a), where acr depends on both mechanical
properties and p0. Their terminal velocity has the form vL ¼ gðv ;R=aÞ

ffiffiffiffiffiffiffiffiffi
E=q

p
that they approximate by vL ¼ ĝðvÞ

ffiffiffiffiffiffiffiffiffi
E=q

p
, for
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functions g and ĝ that are given in [18,19]. It should be mentioned that their equivalent mass is positive for all R/a > 0 and
m 2 (�1.0, 0.5). Note that their equivalent mass is independent of the crack tip speed and hence kinetic energy is an increas-
ing function of crack tip velocity.

This paper is organized as follows. In Section 2 an asymptotic method will be used to determine the order of stress sin-
gularity for a dynamically propagating fractal crack. In Section 3 dynamic propagation of a fractal crack is investigated. We
first show that in the intermediate crack growth regime, i.e. after the initial phase of crack growth, roughness change is so
small that a terminal roughness exponent can be assumed. The phenomenon of reaching a limiting speed is predicted using
some simplifying assumptions. The predicted limiting crack speeds for different brittle amorphous materials are shown to
have good agreement with the experimental results. Finally, conclusions are given in Section 4.

2. Order of stress singularity for a dynamically propagating fractal crack

Consider a crack, whose tips are growing in opposite directions with equal velocities.1 The crack unloads some area of the
body, and while propagating, size of the unloaded area will increase. The form of the stress field in the close vicinity of the crack
tip is of interest as almost all fracture energy will be consumed through different processes in this zone. In the following, the
asymptotic behavior of some important parameters that contribute to energy balance will be investigated. Here, we assume that
the singularity of stress is of the form r�b, where r is distance from the crack tip. In the sequel we find an expression for the order
of stress singularity b.

Several experimental observations confirm that energy consuming phenomena such as temperature rise, acoustic and
phonon emissions, etc. occur in the close vicinity of the moving crack tip. There is one common aspect in all these phenom-
ena; they all have a kinetic origin. To be more precise they are all results of fast movements or oscillations of the particles
around the moving crack tip. This means that the velocity of the particles around the crack tip is of great importance. The
particle velocity at a point depends on two main parameters: the crack tip speed and the strain at the point [35]. Asymptotic
behavior of particle velocity in the close vicinity of a smooth moving crack tip is similar to that of stress for all modes of
fracture. For the classic case we have _ui � r�

1
2. The classic case is a limiting case of fractal model, which is when the roughness

(Hurst) exponent (H) of a self-affine crack trajectory is equal to unity. In the case of a fractal crack, we know that
_ui ¼ fiðv ;Kf

I ; r; EÞ and hence dimensional analysis tells us that

_ui ¼ v Kf
I ðtÞ

rbE
Wiðh;vÞ; ð2:1Þ

where Wi is a dimensionless function and v is short for vnominal.
Asymptotic behavior of the true length of the crack trajectory is also important. The first experimental study on fractal

characteristics of fracture surfaces was carried out by Mandelbrot et al. [48] who showed that the fracture surfaces of steel
are fractals. Since then many experimental investigations have been done. For example, the investigations on the concrete
fracture surfaces by Saouma et al. [71] and Saouma et al. [72] showed that the fracture surfaces of concrete are also fractals.
Based on the experimental observations, we assume that fracture surfaces are self-affine fractals. The asymptotic behavior of
the true crack length growth DL is [49–51,86]

DL � ‘1
H; ð2:2Þ

where ‘ is some characteristic crack growth length.2

The changes of kinetic and strain energies of the body R when the crack length growth is DL are (summation over re-
peated indices is implied):

DT ¼
Z
R

1
2
q _ui _ui dA and DUe ¼

Z
R

r2

E
dA; ð2:3Þ

where dA is the area element. If it is assumed that the change of the strain and kinetic energies is dominant in a small neigh-
borhood Rs around the crack tip, in the above relations R can be replaced by Rs. Kinetic and strain energy changes have the
following asymptotic expressions:

DT � ‘2�2b and DUe � ‘2�2b: ð2:4Þ

In addition to the kinetic and strain energies, there is another important energy term, namely the surface energy. By
assuming a constant specific surface energy per unit of a fractal measure, the surface energy that is required for the forma-
tion of a self-affine fractal crack has the following asymptotic behavior3:

1 To avoid problems with stress-wave reflections we can assume that the crack is semi-infinite. This assumption will not change anything in the following
analysis.

2 There are different definitions of fractal dimension, e.g. box dimension (DB), compass dimension (DC), and mass dimension (DM). In the case of a self-similar
fractal, all of these dimensions have the same value, but this is not the case for self-affine fractal sets. The local values of the box dimension (using small boxes)
and mass dimension (using small radii) are both 2 � H. The compass dimension has a local value 1

H. For more details see [49–51].
3 For very short cracks surface energy is length dependent [42]. However, we are interested in obtaining the limiting crack velocity that corresponds to crack

lengths much larger than any fracture quantum and hence specific surface energy is a material constant.
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DUs � ‘
1
H: ð2:5Þ

For quasi-static crack growth, Griffith’s criterion can be written as DUe + DUs = 0, while for dynamics crack growth it is
written as DUe + DUs + DT = 0, where DUe is the change of the strain energy in the body due to crack growth, DUs is the re-
quired energy for the formation of the new fracture surfaces, and DT is the change of kinetic energy in the body. Using the
equality of asymptotic expressions of energy terms the order of stress singularity can be obtained as

‘2�2b � ‘1
H: ð2:6Þ

Thus

b ¼ 2H � 1
2H

; ð2:7Þ

which is identical to that of a stationary crack [53,37,38,6,85–87]. Therefore, the stress field has the following asymptotic
form:

r � r�b where b ¼
2H�1

2H ; 1
2 < H < 1

0; 0 < H < 1
2

(
: ð2:8Þ

3. Terminal velocity of rough crack growth in brittle materials

From many studies of fracture surfaces formed in brittle materials, it is believed that the surfaces created by the process
of dynamic fracture have a characteristic structure, referred to as mirror–mist–hackle in the literature. This structure has been
observed to occur in materials as diverse as glass and ceramics, noncrosslinked glassy polymers such as PMMA and cross-
linked glassy polymers such as Homalite 100, polystyrene and epoxies (for more details see [45,36,40,67,31] and references
therein).

The prediction and measurement of the crack tip speed has received great attention from researchers in the field of dy-
namic fracture. As was mentioned earlier, Roberts and Wells [70] were the first to find a theoretical prediction for limiting
crack tip velocity. Their calculations based on the Mott’s extension of Griffith’s criterion predicted crack tip speed of 0.38c0

(for m = 0.25), where c0 ¼
ffiffiffiffiffiffiffiffiffi
E=q

p
. Steverding and Lehnigk [77] also predicted the terminal velocity by using an asymptotic

solution and found it to be about 0.52cR. Many researchers argue that the maximum velocity attainable by any moving sur-
face of discontinuity should be identified with the velocity of the Rayleigh surface waves (cR). Ravi-Chandar [67,68] reached
the following three major conclusions about the crack speed measurements: (i) There is an upper limit to the speed with
which dynamic cracks propagate. (ii) This limiting crack speed is significantly lower than the Rayleigh surface wave speed
of the material. (iii) The limiting speed is not a fixed fraction of the Rayleigh wave speed; this fraction is material-dependent.
The data gathered by Fineberg and Marder [31] indicates that in amorphous materials such as PMMA and glass, the maxi-
mum observed velocity of crack propagation barely exceeds about 1/2 of the predicted value.4 In the following we predict the
terminal crack tip velocity using an asymptotic energy balance argument.

To illustrate the process of reaching a constant crack tip speed, suppose that an infinite domain R with an initially smooth
crack is subjected to remote tensile stresses r1. The crack unloads some area of the body Rc that can be approximated by a
disk Rs of radius rs [86]. To specify this circle we need to define a characteristic length for the problem. There is experimental
evidence that the dynamic fracture processes approach a steady state and thus taking the crack length as a characteristic
length will contradict a steady state condition.5 Therefore, we seek a new characteristic length in the problem. Here the frac-
ture quantum is taken as the material characteristic length. Therefore, for a fractal crack the radius of the disk Rs is assumed to
be proportional to a0, i.e. rs � a0 from dimensional analysis arguments. More precisely, for a self-affine crack, the following rela-
tion holds for the radius of the dominance region of strain energy release:

rs ¼ a0UðHÞ; ð3:1Þ

where U is a dimensionless function. We assume that the crack is initially smooth (H = 1). At time t = 0 the strain energy
density reaches a critical value and suddenly the crack starts to grow. As the nominal length of the crack increases, the
roughness of the fracture surfaces increases as well (H decreases) due to the mirror–mist–hackle transition phenomenon.
We postulate that crack surfaces reach a terminal roughness. It should be noted that a self-affine fractal model for H < 1

2
is a plane-filling set and hence the limiting roughness lies in the range 1

2 < HL < 1. Let us justify our postulate of reaching
a terminal roughness using a crack branching argument. The required surface energy for the formation of a self-affine fractal
crack has the asymptotic behavior ‘

1
H. To estimate the actual growth of a self-affine fractal crack, suppose that the nominal

crack growth step is equal to na0, where a0 is fracture quantum and n > 1. According to fractal geometry concepts the actual

4 Note that this is true only for isotropic materials. In an anisotropic body, terminal velocity can reach up to 90% of the Rayleigh wave speed. See the review
by Fineberg and Marder [31] for more details. Here we restrict ourselves to crack propagation in an isotropic medium.

5 In the case of a semi-infinite crack there is no characteristic length.
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growth length DL of a self-affine fractal crack with the nominal growth step size of na0 has the asymptotic form DL � a0n
1
H .

Therefore, the required surface energy has the asymptotic behavior of the form n
1
H. Now we argue that for some values of H

the required surface energy for the formation of two new surfaces (assuming that these new cracks are initially smooth) will
become smaller than the required surface energy for the continuation of the single (roughened) crack.6 For roughness expo-
nents smaller than this limiting roughness (denoted by HL) one can write:

ðnÞ
1
H > 2ðnÞ for H < HL: ð3:2Þ

Therefore, it is probable that by reaching HL the increase of energy flow toward the crack tip causes branching of the
crack. This roughness limit can be estimated by solving n

1
H ¼ 2n for different values of n.7 The results are presented in

Fig. 3.1. Note that for each n the acceptable values of H for having a single crack are H P HL. There are different arguments
in the literature for explaining the branching phenomena in fracture but many of them are not in agreement with the exper-
imental results.8 Note that in the range n 2 [10, 100], HL � 0.8 is almost constant. For large n, H increases but very slowly.
Note that as n ?1, ln n = o(n�) "� > 0 [10]. This means that lnn increases indefinitely but very slowly as n increases. Note
also that for short cracks surface energy depends on n and hence in Fig. 3.1, n 6 5 is not shown.

Since the pioneering work of Mandelbrot et al. [48] understanding the morphology of fracture surfaces has been a very
active field of research. Much recent effort has been focused on characterizing fracture surfaces in terms of a roughness expo-
nent. There are many researchers who argue that there exists a universal roughness for fracture surfaces. Their studies on the
fracture surfaces of different materials indicate that for both quasi-static and dynamic fracture a universal roughness expo-
nent of approximate value 0.8 can be obtained for values of n (scale of observation) greater than a material-dependent scale,
nc [12–14,47,25,26,59]. What we see from our simple crack branching argument is in agreement with these experimental
studies.

By taking the nominal crack growth step to be na0 the actual crack growth length for a self-affine crack propagation can be
estimated as follows:

DLactual ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dy2

p
� a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ n

2
H

q
� a0n

1
H ðn > 1Þ: ð3:3Þ

Note that we assume that the crack lies in the (x,y) plane with nominal growth in the x direction. Let us define the nom-

inal crack tip velocity by vnominal ¼ DL nominal
Dt ¼ na0

Dt and the actual velocity by vactual ¼ n
1
Ha0
Dt , where Dt is the required time for

growth of the fractal crack by the nominal amount of na0. Therefore, the following relation holds between nominal and ac-
tual velocities of the crack tip:

vactual � n
1
H�1vnominal: ð3:4Þ

n

H
L

10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

1.0

admissible roughness

Fig. 3.1. Limiting roughness HL for different values of n = D Lnominal/a0.

6 Eshelby [29] suggested that a crack would branch when the energy going into the creation of a single propagating crack is enough to support two single
cracks. For more details see Fineberg and Marder [31].

7 Note that the equation that we need to solve is kðHÞn1
H ¼ 2n for a function k such that k(1) = 1. As we do not have an explicit form for k(H), we assume it is

approximately equal to unity. If we assume other constant values for k(H) the only change will be value of the approximate terminal roughness. It seems that
the choice k = 1 leads to a reasonable terminal roughness in agreement with experiments. We should also emphasize that the exact value of this terminal
roughness will not change any of the subsequent results.

8 Once a crack bifurcates, single crack models are, of course, no longer valid. Therefore, a theory describing a single crack can, at best, provides a criterion for
when crack branching occurs. A number of such criteria for the onset of crack branching have been proposed. The criterion due to Yoffe [89] and extremal
energy density criteria [76,78,62,2] all suffer from the common problem that the velocities predicted for the onset of branching are much higher than the
observed velocities in the experiments. Additional criteria such as postulating a critical value of the stress intensity factor, have not been consistent with
experiments [61,5] since measurements at the point of branching show considerable variation of the stress intensity factor KI.
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When the crack roughness reaches its limiting value HL ¼ HLðnÞ; n
1

HL ðnÞ
�1 ¼ 2 and hence vactual � 2vnominal. Now if the limit

of vactual is cR, we see that limit of vnominal is about 1
2 cR from this rough estimate. Gao [36] used a wavy-crack model and ob-

served that depending on roughness local crack tip velocity can be as large as twice the apparent crack tip speed. He also
observed that when apparent crack speed is 1

2 cR dynamic energy release rate is maximized.
Reaching the terminal roughness exponent HL has another important consequence; after reaching HL the radius of

the dominance zone of strain energy release will remain unchanged, i.e. rs reaches a constant value. Now we are back
to the main problem of having a terminal velocity for crack propagation in brittle materials. As we concluded earlier from
the experimental observations, almost all the released strain energy will be converted into kinetic energy. Therefore, we
are concerned with the changes of strain and kinetic energies, i.e. DUe and DT. The dominant change of strain energy can
be written as follows:

DUe ¼
Z
Rs

1
2
rij�ijdA: ð3:5Þ

Similar to the case of dynamic fracture of a smooth crack, for a fractal crack the following stress and strain fields at the
moving crack tip are assumed:

rijðr; h;vÞ ¼ Kf
I ðvÞr�bRijðh;vÞ and �ijðr; h; vÞ ¼ Kf

I ðvÞr�bCijklRklðh;vÞ: ð3:6Þ

Substituting the above asymptotic fields into Eq. (3.5), we obtain:

DUe ¼
Z
Rs

1
2
½Kf

I ðvÞ�
2r�2bRijðh;vÞCijklRklðh; vÞdA: ð3:7Þ

In the case of a mode I smooth crack, stress field explicitly depends on the instantaneous crack tip speed v(t) [35]. An
immediate consequence of this is that the near tip field for the time-dependent motion is identical to that for steady state
crack growth in the same material up to a time-dependent proportionality constant. This was demonstrated by Freund
and Clifton [34], Nilsson [55], and Achenbach and Bažant [1], each of whom compared asymptotic solutions for nonuni-
form crack growth with earlier results based on the assumption of steady growth obtained by Cotterell [22], Rice [69],
and Sih [75].

Freund [32,33] suggested an indirect method for determining the dynamic stress intensity factor for mode I crack
propagation with nonuniform crack growth and a general loading condition. The result was that the dynamic stress inten-
sity factor for arbitrary motion of the crack tip is proportional to the corresponding quasi-static stress intensity factor
with a universal proportionality constant, i.e. KI(a, v) = k(v) KI(a, 0), where a is the instantaneous crack characteristic
length, and

kðvÞ ¼ 1� v=cR

Sþð1=vÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v=cd

p ; ð3:8Þ

where cR, cd, and v are the Rayleigh wave speed, dilatational wave speed, and the crack tip velocity, respectively, and S+(1/v)
is close to unity. Therefore, k(v) can be approximated by

kðvÞ ¼ 1� v=cRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv=cRÞ=n

p ; ð3:9Þ

where n = cd/cR.9 We assume that the above result holds for a fractal crack, i.e.10

Kf
I ða;vÞ ¼ kðvÞKf

I ða; 0Þ: ð3:10Þ

The quasi-static stress intensity factor for a fractal crack of projected length 2a subjected to uniform far-field stress r1 is

Kf
I0 ¼ wðHÞr1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pað2H�1Þ=H
p

[87,79]. Thus, for very long cracks (intermediate crack growth regime) the rate of change of stress
intensity factor becomes vanishingly small, i.e.

@Kf
I0

@a
� 0 as a!1: ð3:11Þ

Now, we can use the above arguments in the calculation of the strain energy release. If roughness reaches its terminal
value HL, the size of the dominance zone of strain energy release Rs will became approximately constant and as a result
the order of stress singularity will remain unchanged. In addition to this, increasing the nominal crack length to large values
the change in the stress intensity factor becomes vanishingly small. In other words, the stress intensity factor becomes
approximately constant. Under these conditions, strain energy will change only due to the change of the nominal velocity
of the crack tip. Strain energy in the disk Rs is (H ? HL, a� 1):

9 Note that for plane strain cd/cR 2 [1.635, 1], and for plane stress cd/cR 2 [1.635, 2.145].
10 Xie [84] made a similar assumption for each prefractal crack trajectory in his fractal model.
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DUeðvÞ �
1
2

kðvÞ2
Z
RsðHLÞ

½Kf
I0�

2r�
2HL�1

HL Rijðh;vÞCijklRklðh;vÞdA ¼ 1
2
½Kf

I0�
2kðvÞ2HLr

1
HL
s

Z 2p

0
Rijðh; vÞCijklRklðh;vÞdh; ð3:12Þ

where v = vnominal for short. It can be shown that the effect of infinitesimal changes of crack tip velocity (dv) on the angular
variation of the stress field is negligible and hence, the change of strain energy in the disk Rs due to the change of crack tip
velocity can be simplified to read11

dDUe ¼
1
2
½kðv þ dvÞ2CUe ðHL;r1Þ � kðvÞ2CUeðHL;r1Þ� � CUe ðHL;r1ÞkðvÞk0ðvÞdv ; ð3:13Þ

where

CUe ðHL;r1Þ ¼ ½Kf
I0�

2HLr
1

HL
s

Z 2p

0
Rijðh;vÞCijklRklðh;vÞdh P 0: ð3:14Þ

Fig. 3.2 schematically shows the behavior of the function g(v) = k(v)k0(v). Note that the above integral is positive and hence
strain energy change is always negative; for all values of cd/cR and v/cR strain energy is released as expected.

Now, we assume that the change of kinetic energy due to the released strain energy is dominant in a disk Rk with radius
rk. Similar to the case of determining radius of dominance zone of strain energy release, the fracture quantum (a0) is the char-
acteristic length in the problem. Assuming that rk = rk(a0,H,cR, vnominal), dimensional analysis tells us that:

rk ¼ a0H H;
vnominal

cR

� �
; ð3:15Þ

where cR is Rayleigh wave speed, and H is a dimensionless function. Now we have the following relation for the amount of
kinetic energy change in the disk Rk:

DT ¼
Z
Rk

1
2
q _ui _ui dA; ð3:16Þ

where _ui is the velocity components of material particles. At the radial distance r from the crack tip, the particle velocity
depends on the crack tip velocity and the strain at the particle position. The velocity of particles in the dominance zone
of kinetic energy, Rk, is also a function of the angular position of particles and the ratio of the crack tip speed and a charac-
teristic wave speed. If we assume that for the limiting roughness HL the effect of the change of the nominal crack tip speed on
the size of the dominance zone is negligible, the dominance zone of the kinetic energy change is fixed, and once again these
conditions dictate that kinetic energy can be written as:

DT ¼ kðvÞ2v2
Z
Rk

1
2
q

Kf
I0

rbE
Wiðh; vÞ

" #2

dA; ð3:17Þ

where v is short for vnominal. We know that the effect of infinitesimal changes of crack tip velocity (dv) on the angular var-
iation of the particle velocity field is negligible, and hence the change of kinetic energy due to the change of crack tip velocity
can be written as

g(v)

v/c
R

ξ=1.65
ξ=2.00
ξ=3.00
ξ=5.00
ξ=10.00

0.2 0.4 0.6 0.8 1.0

-0.2

-0.4

-0.6

-0.8

Fig. 3.2. Schematic plot of the strain energy variation function, g(v) = k(v)k
0
(v) versus normalized crack tip speed v/cR.

11 Note that D(�) denotes change in the quantity � due to crack growth (change in the crack length) while d(q) denotes change in the quantity q due to
change in the crack speed.
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dDT ¼ 1
2
½kðv þ dvÞ2ðv þ dvÞ2CTðHL;r1Þ � kðvÞ2v2CTðHL;r1Þ� � CTðHL;r1Þ½kðvÞk0ðvÞv2 þ kðvÞ2v�dv ; ð3:18Þ

where

CTðHL;r1Þ ¼ q
Kf

I0

E

" #2

HLr
1

HL
k

Z 2p

0
Wiðh; vÞWiðh;vÞdh P 0: ð3:19Þ

Fig. 3.3a schematically shows the function f(v) = k(v)k0(v)v2 + k(v)2v for different values of n = cd/cR. Note that in plane strain
cd/cR 2 [1.635,1], and for plane stress cd/cR 2 [1.635, 2.145] and hence the appropriate range of cd/cR should be considered for
each case.

The schematic graph of the function k(v)k0(v)v2 + k(v)2v in Fig. 3.3a shows an interesting phenomenon: After reaching
some value of crack tip speed (vL) increasing v the change of kinetic energy becomes negative. Because the particle velocity
inside the dominance zone of kinetic energy is proportional to the crack tip speed increasing the crack tip speed the kinetic
energy change must be positive, and therefore the crack can not pass this limiting speed (vL). In other words, when the crack
tip speed increases the kinetic energy of the region around the crack tip must increase as well, i.e. kinetic energy must be an
increasing function of the crack tip speed. In terms of the equivalent crack tip mass introduced by Chekunaev and Kaplan
[18,19], our argument is equivalent to saying that the equivalent mass must always be positive (note that their equivalent
mass is independent of velocity), which is the case as was mentioned in Section 1.

The predicted limiting speed for Glass, Homalite-100, PMMA, K5 (Glass), K6 (Glass), and SF6 (Glass) are as follows:

(i) Glass (m = 0.220): ~vL ¼ 0:321c0; v̂L ¼ 0:320c0,
(ii) Homalite-100 (m = 0.310): ~vL ¼ 0:311c0; v̂L ¼ 0:310c0,

(iii) PMMA (m = 0.350): ~vL ¼ 0:305c0; v̂L ¼ 0:306c0,
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0.05

-0.05
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Fig. 3.3. (a) Schematic plot of the kinetic energy variation function, f(v) = k(v)k
0
(v)v2 + k(v)2v versus normalized crack tip speed v/cR. (b) Terminal velocity

versus n = cd/cR.

Table 1
Experimental values of limiting crack speeds for brittle amorphous materials. c0, cR, and m are the longitudinal sound wave speed, Rayleigh wave speed, and
Poisson’s ratio, respectively.

Material Author vL/c0 vL/cR

Glass Schardin and Struth [73] 0.30 0.52
m = 0.22 Edgerton and Bartow [28] 0.28 0.47

Bowden et al. [16] 0.29 0.51
Anthony [4] 0.39 0.66

PMMA Dulaney and Brace [27] 0.36 0.62
m = 0.35 Cotterell [23] 0.33 0.58

Paxson and Lucas [58] 0.36 0.62
Fineberg et al. [30] 0.58–0.62

Homalite-100 Beebe [7] 0.19 0.33
m = 0.31 Kobayashi and Mall [44] 0.22 0.37

Dally [24] 0.24 0.38
Ravi-Chandar and Knauss [63–66] 0.45
Hauch and Marder [40] 0.37

K5 (Glass) Senf et al. [74] 0.29–0.3 0.5–0.52
m = 0.227
K6 (Glass) Senf et al. [74] 0.27–0.3 0.47–0.51
m = 0.231
SF6 (Glass) Senf et al. [74] 0.2–0.23 0.34–0.4
m = 0.248
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(iv) K5 (Glass) (m = 0.227): ~vL ¼ 0:320c0; v̂L ¼ 0:319c0,
(v) K6 (Glass) (m = 0.231): ~vL ¼ 0:320c0; v̂L ¼ 0:318c0,

(vi) SF6 (Glass) (m = 0.248): ~vL ¼ 0:318c0; v̂L ¼ 0:317c0,

where ~vL ¼ vplane strain
L and v̂L ¼ vplane stress

L .
It is seen from Table 1. that there is some scatter in the experimental data and this makes any comparison with exper-

imental data difficult. However, we see that our estimates are close to the experimental data. It should be noted that what
we have obtained for terminal velocity is an upper bound.12 Interestingly, all the experimentally measured velocities (except
PMMA) are smaller than our prediction of the terminal velocity.

The relations between various wave speeds and c0 are: cd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�m
ð1þmÞð1�2mÞ

q
c0 (plane strain dilatational wave speed),

cp
d ¼

c0ffiffiffiffiffiffiffiffiffiffi
ð1�m2Þ
p (plane stress dilatational wave speed), cs ¼ c0ffiffiffiffiffiffiffiffiffiffiffi

2ð1þmÞ
p (shear wave speed), cR ¼ cs 1� 0:135

3�4k2

� �
(Rayleigh wave speed),

where k2 ¼ 1�2m
2ð1�mÞ for plane strain and k2 ¼ 1�m

2 for plane stress. In Fig. 3.4 the normalized limiting velocities vL/cR and vL/c0 are

plotted for different values of Poisson’s ratio and for both cases of plane stress and plane strain. The calculations show that
depending on the Poisson’s ratio the limiting velocities are in the range 0.276c0 � 0.341c0 for plane strain and in the range
0.290c0 � 0.341c0 for plane stress.

4. Conclusions

In this paper, we first obtained the asymptotic stress field around the tip of a dynamically propagating self-affine fractal
crack. We then showed that there is always a lower bound to roughness exponent. We next looked at crack propagation and
the asymptotic behaviors of kinetic and strain energy changes due to crack growth. We obtained an upper bound for terminal
velocity by postulating that the kinetic energy change must be a monotonically increasing function of nominal crack tip
speed. We predicted a material-dependent terminal velocity in the range [0.500cR, 0.557cR] and [0.539cR, 0.557cR] for plane
stress and plane strain, respectively. We should emphasize that our asymptotic analysis only gives an estimate of terminal
velocity. It was observed that for several amorphous brittle materials our predicted terminal velocities are in good agree-
ment with the experimental data. In summary, our main results are: (i) Fractal cracks tend to reach an approximately con-
stant terminal roughness close to HL = 0.8. (ii) There is a terminal velocity of crack propagation lower than the Rayleigh wave
speed. (iii) The terminal velocity is a material-dependent fraction of the corresponding Rayleigh wave speed. iv) This mate-
rial-dependent fraction only depends on the Poisson’s ratio.
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