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Eigenstrains are created as a result of anelastic effects such as defects, temperature changes, bulk growth,
etc., and strongly affect the overall response of solids. In this paper, we study the residual stress and
deformation fields of an incompressible, isotropic, infinite wedge due to a circumferentially symmetric
distribution of finite eigenstrains. In particular, we establish explicit exact solutions for the residual
stresses and deformation of a neo-Hookean wedge containing a symmetric inclusion with finite radial
and circumferential eigenstrains. In addition, we numerically solve for the residual stress field of a neo-
Hookean wedge induced by a symmetric Mooney–Rivlin inhomogeneity with finite eigenstrains.
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1. Introduction

The governing equations of nonlinear elasticity are formidably
complicated and are amenable to analytic solutions only for very
few problems. Semi-inverse methods have been particularly useful
for obtaining exact solutions for nonlinear elasticity problems. One
problem that has attracted several researchers in the last few
decades is that of an infinite wedge made of a nonlinear elastic
solid (either compressible or incompressible) under various
boundary conditions and in the absence of body forces.

Tao and Rajagopal [1] studied the inhomogeneous deformation
of a wedge made of a Blatz–Ko material. They assumed a specific
form of deformations in which radial planes in the reference
configuration remain radial planes after deformation. They found
the only possible inhomogeneous solution, which turned out to be
asymmetric with respect to the bisecting plane of the wedge. This
specific class of deformations was further studied in the literature
to find the inhomogeneous deformations in wedges and cones. Fu
et al. [2] explored circumferentially symmetric finite deformations
of a wedge made of an incompressible Mooney–Rivlin material. To
solve the problem, they specified the translation and rotation of
the lateral faces of the wedge. They proved that the deformation is
homogeneous when the pressure field associated with the in-
compressibility condition is uniform. For the inhomogeneous
Environmental Engineering,
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solutions, they were able to reduce the governing equations to a
convenient form that allowed for a plane-phase analysis. They
observed that for certain wedge angles, the deformation of the
wedge is not radially unidirectional, i.e., some parts of the wedge
radially stretch, while others contract. Rajagopal and Carroll [3]
assumed inhomogeneous circumferentially symmetric finite de-
formations of a wedge made of an isotropic material. Using the
displacement lateral boundary conditions and by applying the
required tractions on the circular boundary, they obtained, when
the material is compressible, a necessary condition that the energy
function needs to satisfy for the assumed inhomogeneous de-
formation to be possible. For incompressible materials, they
showed that such an inhomogeneous deformation is possible if
the pressure field has a logarithmic singularity at the origin. Ra-
jagopal and Tao [4] studied inhomogeneous circumferentially
symmetric finite deformations of a wedge made of an in-
compressible power law material. They showed that a “boundary
layer solution”, i.e., one that is homogeneous in the interior of the
wedge but is inhomogeneous close to the boundary, is possible
with a bounded pressure field. However, they showed that in-
homogeneous solutions are possible only if the pressure field de-
velops a logarithmic singularity at the apex of the wedge. Walton
and Wilber [5] investigated the deformations of a neo-Hookean
elastic wedge considering the aforementioned class of deforma-
tions. They observed that homogeneous non-unidirectional de-
formations are possible in every incompressible, isotropic, hyper-
elastic material. Assuming a more general class of deformations,
where some restrictions on the form of the deformation were
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relaxed, they showed that there exist no additional solutions.
Walton [6] studied the stability of this class of deformations under
small amplitude vibrational perturbations of the lateral faces of a
wedge. He found that even to the first order in an asymptotic
expansion of the amplitude of the lateral sides of the wedge, the
vibrations cannot remain planar; rather out-of-plane vibrational
modes must be excited in the interior of the wedge.

In continuum mechanics a strain is some measure of de-
formation that gives the length of an infinitesimal line element
assuming that the length of this line element is known in some
other (reference) configuration. A stress is usually defined to be an
areal density of force. Given a pair of thermodynamically con-
jugate stress and strain, e.g. the first Piola–Kirchhoff stress and the
deformation gradient ( )P F, or the second Piola–Kirchhoff stress
and the right Cauchy–Green strain ( )S C, , locally a non-zero strain
does not correspond to a non-zero stress. That part of strain that
locally is related to the corresponding stress is called elastic strain.
The remaining part is usually referred to as eigenstrain or pre-
strain. The term eigenstrain was first used by Mura [7]. Other terms
have been used in the literature for the same concept, e.g. initial
strain [8], inherent strain [9], and transformation strain [10] (see [11]
for a more detailed discussion). In a homogeneous body by an
inclusion we mean a region with a distribution of eigenstrains.
When the region with eigenstrains and the matrix are made of
different materials instead of inclusion we use inhomogeneity with
eigenstrain.

In the setting of linear elasticity Eshelby [10] computed the
stress field of an ellipsoidal inclusion with uniform (infinitesimal)
eigenstrains in an infinite isotropic solid. There have been a few 2D
extensions of Eshleby's problem to finite elasticity for harmonic
materials [12–16]. The classical shrink-fit problem of nonlinear
elasticity [17] is the nonlinear analog of an inclusion with pure
dilatational eigenstrains. The problem of finite eigenstrains in 3D
nonlinear elasticity was analytically studied by Yavari and Goriely
[18]. They calculated the residual stress fields induced by finite
radial and circumferential eigenstrains for the case of spherical
balls and (finite and infinite) circular cylindrical bars made of ar-
bitrary incompressible and isotropic solids. The problem of finite
shear eigenstrains and the twist-fit problem were investigated
recently by Yavari and Goriely [19].

To our best knowledge, finite eigenstrains in the framework of
nonlinear elasticity have not been studied in any geometry other
than spherical and cylindrical. In this paper, we consider an in-
finite wedge made of an incompressible and isotropic solid and
assume that it has a circumferentially symmetric distribution of
finite radial and circumferential eigenstrains. We derive the gov-
erning equilibrium equations of the wedge and using a semi-in-
verse method and assuming a specific class of deformations find
the stresses that are induced by finite radial and circumferential
eigenstrains. In particular, we solve for the stress field of both neo-
Hookean and Mooney–Rivlin wedges with a symmetric inclusion
or inhomogeneity with eigenstrains.

This paper is organized as follows. In Section 2, we tersely re-
view some basic concepts of geometric anelasticity. In Section 3,
we discuss the material manifold of a wedge with a circumferen-
tially symmetric distribution of finite eigenstrains and find the
governing equations for an incompressible, isotropic wedge. In
Sections 3.1 and 3.2, we solve the problems of an inclusion and a
Mooney–Rivlin inhomogeneity with uniform eigenstrains in a neo-
Hookean wedge. In Section 3.3, we find the impotent (stress-free)
circumferentially symmetric finite eigenstrain distributions. In
Section 4, we conclude the paper with some remarks.

2. Elements of geometric anelasticity

In this section, we briefly review some fundamental elements
of the geometric theory of nonlinear elasticity and anelasticity. For
more detailed discussions, see [20,21].

Kinematics: A body B is assumed to be identified with a Rie-
mannian manifold ( )G, . A configuration of is a smooth em-
bedding φ →: , where ( )g, is the Euclidean ambient space.
We denote by ∇G and ∇g the Levi–Civita connections associated
with the Riemannian manifolds ( )G, and ( )g, , respectively. The
set of all configurations of is denoted by . A motion of is a
curve φ→ ∈+ t such that ϕt assigns a spatial point

( )φ φ= ( ) = ∈x X X t,t to every material point ∈X at a time t.
The deformation gradient F is the derivative map of ϕt defined as

φ( ) = ( ) → ( )φ ( )F X t d X T T, : . 2.1t X Xt

The adjoint of F is defined by

( ) ( )
( ) →

= ∀ ∈ ∈ ( )

φ

φ

⊤
( )

⊤
( )

F

g FV G V F V

X t T T

T Tv v v

, : ,

, , , , . 2.2

X X

X X

t

t

The right Cauchy–Green deformation tensor is defined as

( ) = ( ) ( ) → ( )⊤C F FX t X t X t T T, , , : . 2.3X X

In the coordinate charts { }XA and { }xa for and , respectively, in
components, C can be written as: =C G F F gB

A AL
L
a

B
b

ab. The Jacobian of
the motion J relates the material and spatial Riemannian volume
elements ( )GdV X, and ( )gdv x, by dv¼ J dV and is given by

=
( )

g
G

FJ
det
det

det .
2.4

Constitutive equations: In this paper we restrict our calculations
to incompressible isotropic hyperelastic solids. That is, there exists
an energy function W that depends only on the first two principal
invariants of C: = CI tr1 and = ( ( ) − ( ))C CI tr tr2

1
2

2 2 , i.e.,
= ( )W W X I I, ,1 2 , such that the Cauchy stress tensor is given in

components by [22]

( )σ = + − − ( )
⎡⎣ ⎤⎦F F W I W G W C pg2 , 2.5

ab
A
a

B
b

I I
AB

I
AB ab

11 2 2

where ≔∂
∂WI
W
I1 1
, ≔∂

∂WI
W
I2 2
, and p is the Lagrange multiplier associated

with the internal incompressibility constraint J¼1.
Equilibrium equations: In terms of the Cauchy stress tensor, the

localized balance of linear momentum of a body in static equili-
brium and in the absence of body forces reads

σ = ( )0div , 2.6

where div denotes the spatial divergence operator. In components,
the spatial divergence operator reads

σ σ σ σ γ σ γ( ) = = ∂
∂

+ + ( )| x
div ,

2.7
a

b
ab

ab

b
ac

cb
b cb

cb
a

where γbc
a is the Christoffel symbol of the Levi–Civita connection ∇g

in the local chart { }xa , defined as γ∇ ∂ = ∂∂
g

c bc
a

ab
(similarly, for the

material manifold Γ∇ ∂ = ∂∂
G

C BC
A

AB
).

The Riemannian material manifold: In geometric anelasticity one
starts with a stress-free body without eigenstrains sitting in the
Euclidean space with metric G0. This means that the body free of
eigenstrains is a Riemannian manifold ( )G, 0 . The effect of an
eigenstrain distribution is to locally transform a line element dX0
to =d dX K X0, where K explicitly depends on the distribution of
eigenstrains. Note that

( ) ( )= ( )d d d dG X X G X X, , , 2.80 0 0

where = *G K G0 is the push-forward of G0 by K. In the manifold
( )G, , the body with the distributed eigenstrains is stress-free
because the distances are set to be those of the hypothetically



Fig. 1. A wedge with a finite circumferentially symmetric eigenstrain distribution.
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relaxed body. Note that in components, = ( )α β
αβG K K GAB A B 0 , where

the coordinate charts { ¯ }αX and { }XA in the initial and distorted
reference configurations, respectively, are assumed.

In the geometric formulation of anelasticity, all the anelastic
effects are buried into the material manifold. In other words, if one
succeeds in building a material manifold (where the body is stress-
free by construction) then the anelasticity problem is transformed
into a classical nonlinear elasticity problem as long as the non-
trivial geometry of the material manifold is taken into account
properly. In our formulation of nonlinear anelasticity kinematics
and the governing equations have forms identical to those of the
classical nonlinear elasticity; nonlinear elasticity is a special case
in this formulation in which the material manifold is Euclidean.
Certain questions, e.g. finding the stress-free finite eigenstrain
distributions, are formulated quite naturally in the geometric fra-
mework as we will explain in this paper.
3. An infinite incompressible isotropic wedge with finite cir-
cumferentially symmetric eigenstrains

In this section we consider an infinitely long wedge of radius Ro
and angle Θ2 o (see Fig. 1). Let Θ( ¯ ¯ ¯ )R Z, , be the cylindrical co-
ordinates for which Θ Θ Θ¯ ≥ − ≤ ¯ ≤R 0, o o, and ¯ ∈ Z such that the
axis of the wedge corresponds to ¯ =R 0. In the cylindrical co-
ordinates Θ( ¯ ¯ ¯ )R Z, , , the material metric for the eigenstrain-free
configuration reads

= ¯
( )

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟G R

1 0 0

0 0
0 0 1

.

3.1
0 2

We assume a circumferentially symmetric eigenstrain (pre-strain)
distribution in the wedge. With respect to the initial reference
configuration and using the cylindrical coordinates Θ( )R Z, , for the
material manifold K is assumed to have the following re-
presentation:

=
( )

ω Θ

ω Θ

( )

( )Θ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟K

e
e

0 0
0 0
0 0 1

,
3.2

R

where ω Θ( )R and ω Θ( )Θ are arbitrary functions that describe the
radial and circumferential eigenstrain distributions in the wedge.
Now the material metric = *G K G0 will have the following re-
presentation in the cylindrical coordinates Θ( )R Z, , :

=
( )

ω Θ

ω Θ

( )

( )Θ

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟G

e
R e

0 0
0 0
0 0 1

.
3.3

2

2 2

R

This is the metric that was introduced by Yavari and Goriely [18].1
1 Similar constructions using non-trivial material geometries have been
We endow the ambient space with the flat Euclidean metric,
which in cylindrical coordinates θ( )r z, , reads

=
( )

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟g r

1 0 0
0 0
0 0 1

.
3.4

2

Let us consider the class of deformations for which radial surfaces
Θ = constant in the reference configuration remain planar and are
mapped to radial surfaces in the current configuration. That is, we
assume an embedding of the material manifold into the ambient
space with the following form:

Θ θ Θ= ( ) = ( ) = ( )r k R h z Z, , , . 3.5

Therefore, the deformation gradient reads

Θ

Θ
=

∂
∂

∂
∂

( )

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
F

k
R

k

dh
d

0

0 0

0 0 1

.

3.6

Assuming incompressibility = =FJ det 1g
G

det
det

, we find

Θ Θ Θ′( ) ( ) − ( ) = ( )ω Θ ω Θ( )+ ( )Θ⎡⎣ ⎤⎦h k R k R e, 0, . 3.72 2 2 R

Eliminating the rigid body translation by setting Θ( ) =r 0, 0, we
find that

Θ ζ Θ= ( ) = ( ) ( )r k R R, , 3.8

where

ζ Θ
Θ

( ) =
′( ) ( )

ω Θ ω Θ( )+ ( )Θe
h

.
3.9

2
R

This means that for an incompressible wedge within the class of
deformations (3.5), and given the radial and circumferential ei-
genstrain distributions, the kinematics is fully determined after
solving for the unknown function ζ ζ Θ= ( ). The right Cauchy–
Green deformation tensor is written as

ζ Θ ζ Θ ζ Θ

ζ Θ ζ Θ
ζ Θ

ζ Θ=

( ) ( ) ′( )

( ) ′( )
( )

+ ′( )

( )

ω Θ ω Θ

ω Θ ω Θ
ω Θ

− ( ) − ( )

− ( ) ( )
− ( )

Θ
Θ

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
C

e Re

e
R

e
e

0

0

0 0 1

.

3.10

2 2 2

2 2

2
2 2

R R

R

The invariants of C are

( ) ( ) ( )
ζ Θ ζ Θ

ζ Θ
= ( ) = + ( ) + ′( ) +

( ) ( )
ω Θ ω Θ

ω Θ
− − ΘCI e e

e
tr 1 ,

3.111
2 2 2 2

2

2
R

R

( ) ( )

( )

ζ Θ ζ Θ

ζ Θ

= ( ( ) − ( ) ) = + ( ) + ′( )

+
( ) ( )

ω Θ ω Θ

ω Θ

− − ΘC CI e e

e

1
2

tr tr 1

,
3.12

2
2 2 2 2 2 2

2

2

R

R

= ( ) = ( )CI det 1. 3.133

Note that =I I1 2 depends only on Θ.
We assume that the wedge is made of an incompressible iso-

tropic radially homogenous material, i.e., the strain energy func-
tion has the form Θ= ( )W W I I, ,1 2 . Following (2.5), for the class of
(footnote continued)
introduced in thermoelasticity, growth mechanics, and the mechanics of dis-
tributed defects [21,23–29].
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deformations (3.5), the non-zero components of the Cauchy stress
tensor read

( ) ( )σ ζ Θ ζ Θ= ( + ) ( ) + ( ) − +′( ) ( )ω Θ ω Θ− −Θ 3.14W W e e p W2 2 ,rr
I I I

2 2 2 2 R
1 2 2

( ) ( )σ ζ Θ
ζ Θ

=
′( )
( )

( + )
( )

θ ω Θ ω Θ− Θ
R

W W e
2

,
3.15

r
I I2

R
1 2

( ) ( )( )σ
ζ Θ

ζ Θ=
( )

+ − ( ) −
( )

θθ ω Θ
⎛
⎝⎜

⎞
⎠⎟R

e W W p W
1

2 2 ,
3.16

I I I2 4
2 2R

1 2 2

( )
σ ζ Θ ζ Θ

ζ Θ
= ′( ) + ( ) +

( )
− +ωΘ Θ ω Θ

ω Θ
− ( ) − ( )

( )⎛
⎝⎜

⎞
⎠⎟ 3.17

W e e
e

p W2 2 .zz
I R

R
I2

2 2 2 2
2

2 1

The physical components of the Cauchy stress, i.e., σ σ^ = g gab ab
aa bb

(no summation) [30] read

σ σ σ ζ Θ σ σ ζ Θ σ σ σ^ = ^ = ( ) ^ = ( ) ^ = ( )θ θ θθ θθR R, , , . 3.18rr rr r r zz zz2 2

The first Piola–Kirchhoff stress tensor σ= ( )−P J FaA A ab
b

1 has the
following non-zero components:

( )( )( ) ( )
ζ Θ

ζ Θ=
( )

( ) + − −
( )

ω Θ
ω Θ

− ⎛
⎝⎜

⎞
⎠⎟P

e
W W e p W2 2 ,

3.19
rR

I I I

2
2 2

R
R

1 2 2

ζ Θ= ′( )( + ) ( )
Θ

ω Θ− ( )Θ
P

e
R

W W
2

, 3.20
r

I I

2

1 2

ζ Θ
ζ Θ

=
′( )

( )
( − )

( )
θ

ω Θ ω Θ− ( )− ( )Θ
P

e
R

p W2 ,
3.21

R
I

R

2

( ) ( )( ) ( ) ( )
ζ Θ

ζ Θ=
( )

+ − ( ) −
( )

θΘ
ω Θ ω Θ

ω Θ
− −Θ ⎛

⎝⎜
⎞
⎠⎟P

e
R

e W W p W2 2 ,
3.22

I I I2 2
2 2

R
R

1 2 2

( )
( ) ( ) ( )

ζ Θ ζ Θ
ζ Θ

= ′( ) + ( ) +
( )

− +ωΘ Θ ω Θ
ω Θ

− −
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

3.23
P W e e

e
p W2 2 .zZ

I R
R

I2
2 2 2 2

2

2 1

In the absence of body forces, the non-trivial equilibrium
equations are σ =| 0b

rb and σ =θ
| 0b
b (the axial equilibrium equation

implies that Θ= ( ))p p R, . Note that, following (3.5), (3.8), and (3.9),
we have

ζ Θ
∂
∂

=
( )

∂
∂ ( )r R

1
,

3.24

θ
ζ Θ

Θ
ζ Θ
ζ Θ

∂
∂

= ( ) ∂
∂

−
′( )
( )

∂
∂ ( )ω Θ ω Θ( )+ ( )Θ

⎛
⎝⎜

⎞
⎠⎟e

R
R

.
3.25

2

R

Therefore, the non-trivial equilibrium equations read

( )( ) ( )( )ζ ζ ζ ω ω ζ

ζ
ζ

″ + + ′ + ′ − ′ + ′ ′ + ′

+ ( + ) − − ∂
∂

=
( )

ω
Θ

ω
ω

−

−

Θ
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

e W W W W W W

W W e
e

R
p
R

2

2 0,
3.26a

I I I I R I I

I I

2

2 2
2

2
R

R

1 2 1 2 1 2

1 2
ζζ ζ
Θ

ω

ζ

′∂
∂

− ∂
∂

+ ( ′ + ′ ) + ′ ( + )

+ ′ = ( )

ω ωR
p
R

p
e W W e W W

W

2 4

2 0, 3.26b

I I R I I

I

2 2 2

2

R R
1 2 1 2

2

where by using the chain rule, one can write

Θ
Θ Θ Θ

Θ
Θ Θ Θ

′ ( ) =
∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

′ ( ) =
∂

∂
∂
∂

+
∂
∂

∂
∂

+
∂
∂ ( )

W
W
I

I W
I

I W

W
W

I
I W

I
I W

,

.
3.27

I
I I I

I
I I I

1

1

2

2

1

1

2

2

1
1 1 1

2
2 2 2

It follows from (3.26a) that

Θ Θ Φ Θ( ) = ( ) + ( ) ( )p R f R, ln , 3.28

where

( )( )

( )

( )Θ ζ ζ ζ ω ω

ζ ζ
ζ

( ) = ″ + + ′ + ′ − ′

+ ′ ′ + ′ + + −
( )

ω
Θ

ω
ω

−

−

Θ
⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

f e W W W W

W W W W e
e

2

2 ,
3.29

I I I I R

I I I I

2

2 2
2

2
R

R

1 2 1 2

1 2 1 2

and Φ Θ( ) is an arbitrary function of Θ to be determined. Sub-
stituting the pressure field into (3.26b) yields

( ) ( )ζζ ζ Φ ω

ζ ζ

′ − ′ + ′ + ′ + ′ +

+ ′ − ′ = ( )

ω ωf e W W e W W

W f R

2 4

2 ln 0. 3.30

I I R I I

I

2 2 2

2 2

R R
1 2 1 2

2

Note that (3.30) must hold for any R and ζ Θ( ) ≠ 0. Therefore, f is
constant, i.e., Θ( ) =f fo and hence

Θ Φ Θ( ) = + ( ) ( )p R f R, ln . 3.31o

Therefore, the equilibrium equation (3.30) is reduced to the fol-
lowing ODE:

( ) ( )ζζ ζ Φ ω ζ′ − ′ + ′ + + ′ + + ′ =ω ω ω⎡⎣ ⎤⎦ 3.32f e W W e W e W4 2 2 0.o R R I I R I R I
2 2

1 2
2

1
2 2

2

One then obtains Φ′ as

( )
Φ Θ ζ

ζ ζ
ω

ζ
′( ) =

′
+ ( ′ + ′ ) +

′
( + ) + ′

ω ω

3.33
f

e
W W

e
W W W

2 4
2 .o

R
I I

R R
I I I

2

2 1 2

2

2 1 2 2

Eq. (3.29) gives us the following nonlinear second-order ODE for
ζ Θ( ):
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In the next section, we will solve for the residual stress field of a
neo-Hookean wedge with a symmetric inclusion with uniform
eigenstrains.

3.1. An inclusion with uniform eigenstrains in a neo-Hookean wedge
with traction-free lateral boundaries

Let us consider the following distribution of eigenstrains in the
wedge (see Fig. 2):

ω Θ
ω Θ α

Θ α
ω Θ

ω Θ α
Θ α

( ) =
≤
>

( ) =
≤
> ( )

Θ
⎧⎨⎩

⎧⎨⎩
,

0,
,

,
0,

,
3.35

R
o

o

o

o

1 2

where ω1 and ω2 are constants. Let us assume that the wedge is
made of an incompressible homogeneous neo-Hookean solid, i.e.,

= ( ) = ( − )μW W I I 31 2 1 . Thus, = =μW W, 0I I21 2 . Simplifying (3.34), we

find the following non-linear second-order ODEs inside and



Fig. 2. A wedge with uniform eigenstrains in the shaded region.

2 Note that the physical components of the first Piola–Kirchhoff stress tensor

are defined as ^ =P P G g
aA

aA
AA aa (no summation).

3 The resultant force acting in the θ-direction on the circular boundary is tri-
vially zero as ζ Θ′( ) is an odd function. In addition, tz¼0 as =P 0zR .

4 The volume form of a Riemannian manifold is defined as

( )Ω = ∧ ∧ ⋯ ∧g dx dx dxdet ij
n1 2 .
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outside the inclusion:
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Note that in the absence of eigenstrains (ω ω= = 01 2 ), the above
equations reduce to the equation for the deformation of a wedge
derived by Fu et al. [2], Rajagopal and Carroll [4], Rajagopal and
Tao [3]. We integrate (3.33) for the assumed eigenstrain distribu-
tion and find that the pressure field has the following distribution:

Θ Φ Θ
ζ Θ Θ α
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where pi and po are constants of integration. We integrate (3.36)
once and obtain
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where ci1 and co1 are constants of integration. In order to solve
(3.38) for ζ , we next examine the boundary and continuity
conditions.

Boundary conditions: The traction vector is defined as

σ= 〈 〉 ( )t n, . 3.39g

In components, σ( ) =nt x g n,a ac
bc

b. From (3.39), the continuity of
the traction vector on the boundary of the inclusion (or in-
homogeneity) implies that both σ θr and σθθ must be continuous at
Θ¼7αo. Thus, after some simplifications, (3.15) and (3.16) give us

ζ Θ ζ Θ′( )| = ′( )| ( )ω ω
Θ α Θ α

−
= =− +e , 3.40o o

1 2

and

( ) ( )μ ζ α− = − ( ± ) ( )ωe p p1 . 3.41i o o
2 21

Remark 3.1. From (3.41), it is clear that when the eigenstrain
distribution is purely circumferential, i.e., ω = 01 , one finds that

= =p p ci o . Hence, the pressure field is continuous at the inclusion
boundary and reads ( )Θ ζ Θ( ) = ( ) +p R f R c, lno .

Remark 3.2. Note that although the Cauchy traction vector
( ) σ= 〈 〉t n nx, , g is continuous at the inclusion boundary, the first

Piola–Kirchhoff traction vector ( ) = 〈 〉t N P NX, , Go is not. This is due
to the fact that to is defined with respect to the undeformed sur-
face element dA in the reference configuration. Since the material
metric is discontinuous at the inclusion boundary, dA is dis-
continuous as well. However, ( ) = ( )t N t nX dA x da, ,o is continuous.
Hence the first Piola–Kirchhoff traction vector must be dis-
continuous at the inclusion boundary to account for the dis-
continuity of dA and make ( )t NX dA,o continuous. On the other
hand, t is continuous because it is defined per unit of deformed
area in the current configuration da, which is continuous at the
inclusion boundary.

The continuity of the displacement field implies that ζ Θ( ) and
Θ( )h are both continuous at Θ α= ± o. For boundary conditions, we

can either prescribe the tractions or the resultant forces acting on
the boundary of the wedge. Alternatively, we may specify the
boundary displacements and then find the required surface trac-
tions. We assume the special case of symmetric boundary condi-
tions with respect to the bisecting plane of the wedge, and then
find the boundary tractions required to maintain such a de-
formation. Note, however, that Tao and Rajagopal [1] showed that
for Blatz–Ko (compressible) materials, only asymmetric in-
homogeneous solutions are admitted by the equilibrium
equations.

Let us assume that the lateral boundaries are traction-free, i.e.

Θ Θ= = ≤ ≤ = ± ( )Θ θΘP P R R0, 0 , . 3.42r
o o

Imposing (3.42), we find that Θ( )p R, must be bounded (fo¼0) and

ζ Θ μ
ζ Θ

′( ± ) = =
( ) ( )

p0, .
3.43o o

o
2

Furthermore, (3.37) implies that the pressure is equal to pi inside
the inclusion and is equal to po outside the inclusion. Note that due
to the symmetry of the problem, ζ Θ( ) and Θ( )h must be even and
odd, respectively. Thus, since (3.36) implies that ζ Θ( ) must be at
least C2 inside the inclusion, we have ζ′( ) =0 0. Hence, we can
solve the problem by imposing the above boundary conditions,
which in turn specify the required traction distribution on the
circular boundary of the wedge. Then, we find the resultant force
acting on the circular boundary of the wedge, which is equal to the
force that needs to be applied at the apex of the wedge to maintain
the equilibrium. The radial material traction per unit undeformed
area acting on the circular boundary is calculated using the rela-
tion, =t P N Go

a aA B
BA. Thus

2

Θ Θ Θ= ^ = ^ = − < < ( )θ θ
t P t P R R, , , . 3.44o

R
o
r rR

o o o

Therefore, the radial force per unit undeformed area reads3

∫= ( )F t dA , 3.45Gr o
r

where Θ= ∧ω Θ( )ΘdA R e d dZG o is the Riemannian area element.4

Hence, for the infinite cylinder (in the Z-direction), the radial force
per unit length of the cylinder in the Z-direction is written as
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which is simplified to read
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Remark 3.3. It is worth mentioning that only if ζ Θ( ) = constant
one can enforce pointwise zero traction boundary conditions on
the whole boundary of the wedge for any values ofω1. In this case,
we can only have Θo¼αo and ζ = ωe 1, which in turn gives

Θ Θ( ) = ω ω−h e 2 1 . Hence, all the stress components vanish point-
wise.

Solving (3.38), one obtains ζ Θ( ) in the upper half region of the
wedge as5
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where ci2 and co2 are constants. Eq. (3.43), i.e., ζ Θ′( ) = 0o , and
ζ′( ) =0 0 give us π Θ= −c k 2o o12 and π=c ki 22 , respectively, where

∈ k k,1 2 . Upon using the continuity of ζ Θ( ) at Θ α= o as well as
(3.40), we find ci1 and co1. They read
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Using (3.8), one finds
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where ci3 and co3 are constants of integration. Imposing the con-
dition ( ) =h 0 0, implies that π= − −πc k ki 2 2 33 , where ∈ k3 . Using

the continuity of Θ( )h at Θ α= ,o we have
5 Here, it suffices to specify ζ Θ( ) and Θ( )h only in the upper half region of the
wedge as these functions are even and odd, respectively.
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Remark 3.4. From (3.49) and (3.50), it can be seen that ω = 01

implies that = ωc e2i
2

1
2 and =c 2o1 . In this case, the radius of the

wedge does not change, and the inclusion deforms independently
of the matrix in the circumferential direction, such that

Θ Θ( ) = ωh e 2 in the inclusion, and Θ α Θ( ) = ( − ) +ωh e 1 o2 outside
the inclusion. Furthermore, all the components of the stress tensor
are zero point-wise.

Using (3.18), (3.37), (3.41), and (3.43), one finds the physical
components of the Cauchy stress, along with the pressure field as
follows:
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Remark 3.5. Note that the physical components of the Cauchy
stress are independent of the radial coordinate R. Therefore, the
stress components at the apex of the wedge do not have a unique
value. In fact, this should not be surprising given that the eigen-
strain distribution (3.35) is multi-valued at the apex.

Numerical results: We now consider some specific examples
and find the deformed shape of the wedge and the corresponding
residual stress field. A comparison of the deformations and the
distribution of the stress components for different values of ei-
genstrains ω1 and ω2, and various wedge geometries is presented
in Figs. 3–7. A wedge having an inclusion with positive pure di-
latational eigenstrains is depicted in Fig. 3. As expected both the
inclusion and the matrix regions are pushed outward in the radial



Fig. 3. Left: The initial and deformed configurations of a wedge with the initial half angle Θ = π
o 4

having an inclusion with α = π
o 8

and the pure dilatational eigenstrain
distribution ω ω= =1 2

1
2
. Right: Variation of the physical components of the Cauchy stress tensor versus Θ.
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direction, with the matrix filaments stretched more than those of
the inclusion. Although the circumferential eigenstrain is positive
in this case, the total wedge angle is decreased. As a matter of fact,
for any positive value of pure dilatational eigenstrains the angle of
the wedge is reduced after deformation. Moreover, σ̂ rr is com-
pressive in the inclusion and tensile in the matrix, and undergoes a
jump at the inclusion–matrix interface, which is also the case as
illustrated in other figures.6

For an inclusion with negative purely dilatational eigenstrains,
all the radial planes of the wedge displace inward, with the matrix
region being shortened more than the inclusion (Fig. 4). Un-
deformed and deformed configurations of a wedge with positive
radial and negative circumferential eigenstrains are shown in
Fig. 5. Note that σ̂ θθ is tensile throughout the wedge, and σ̂ rr is
compressive and tensile in the inclusion and the matrix, respec-
tively. A wedge containing an inclusion with a negative radial and
positive circumferential eigenstrains is shown in Fig. 6. Notice that
unlike other cases for which the deformation was purely inward or
purely outward, in this example, the deformation is no longer
unidirectional. In this example, the central region of the inclusion
moves outward, while the region close to the inclusion–matrix
interface moves inward. Moreover, this trend continues even for
the large negative values of the radial eigenstrain. Although the
circumferential eigenstrain is positive, the inclusion shrinks in the
circumferential direction, while the matrix expands in this
6 Note that the undeformed (reference) configuration shown in the following
figures has a metric different from that of the deformed configuration, and hence,
the area of the body seen in the figures is not representative of the actual volume of
the body in the (non-flat) reference configuration. In particular, the material
manifold is equipped with the non-trivial Riemannian metric (3.3), giving a volume
for the body in the reference configuration different from that given by the flat
Euclidean metric.
direction such that the total angle of the wedge is increased. Fig. 7
shows an inclusion with a purely radial eigenstrain. Note that al-
though the eigenstrain is purely radial, the wedge is deformed
considerably in the circumferential direction, with the inclusion
expanding and the matrix shrinking circumferentially such that
the total angle of the wedge is reduced.
3.2. A Mooney–Rivlin inhomogeneity with uniform eigenstrains in a
neo-Hookean wedge with clamped lateral boundaries

In this example, we consider an inhomogeneity made of a
Mooney–Rivlin material in a neo-Hookean wedge with fixed
(clamped) lateral boundaries such that they cannot move in the
radial and circumferential directions. The energy function has the
following Θ-dependence in the wedge:
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Moreover, we consider the eigenstrain distribution in the wedge
given by (3.35). Looking at (3.33) and (3.34) one observes that Eqs.
(3.37) and (3.38) of Section 3.1 hold for this example as well if μ in
(3.38) is replaced by μ μ+1 2 and μo in the inhomogeneity and the
matrix, respectively. Therefore
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Fig. 4. Left: The initial and deformed configurations of a wedge with the initial half angle Θ = π
o 4

having an inclusion with α = π
o 8

and the pure dilatational eigenstrain
distribution ω ω= = −1 2

1
2
. Right: Variation of the physical components of the Cauchy stress tensor versus Θ.

Fig. 5. Left: The initial and deformed configurations of a wedge with the initial half angle Θ = π
o 4

having an inclusion with α = π
o 18

and the constant eigenstrain distribution
ω =1

1
2
and ω = −2

1
2
. Right: Variation of the physical components of the Cauchy stress tensor versus Θ.
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Fig. 6. Left: The initial and deformed configurations of a wedge with the initial half angle Θ = π
o 4

having an inclusion with α = π
o 18

and the constant eigenstrain distribution

ω = −1
3
5
and ω =2

2
5
. Right: Variation of the physical components of the Cauchy stress tensor versus Θ. In this example, the deformation is non-unidirectional.

Fig. 7. Left: The initial and deformed configurations of a wedge with the initial half angle Θ = π
o 3

having an inclusion with α = π
o 18

and the constant eigenstrain distribution
ω = 11 and ω = 02 . Right: Variation of the physical components of the Cauchy stress tensor versus Θ.
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Boundary conditions: The continuity of the traction vector at the
inhomogeneity–matrix interface implies that
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We assume that the lateral boundaries of the wedge are clamped,
i.e.7

ζ Θ Θ Θ( ) = ( ) = ( )h1, . 3.63o o o

In order to determine the pressure constants pi and po, we assume
that the resultant force acting on the circular boundary of the
wedge vanishes. Using (3.46), the radial force per unit length of
the cylinder in the Z-direction is simplified to read
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We proceed to numerically solve the boundary-value problem
(3.60) along with the above boundary conditions and the con-
straint of a zero-boundary resultant. The physical components of
the Cauchy stress read
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7 The functions ζ Θ( ) and Θ( )h are even and odd, respectively, and hence,
ζ′( ) =0 0 and ( ) =h 0 0.
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Remark 3.6. Note that σ̂ θr depends only on Θ. Moreover, the ra-
dial dependence of σ̂ rr , σ̂ θθ , and σ̂ zz is linear with respect to Rln .
We use this property and plot the stress components at =R Ro.

Numerical results: The deformation of the wedge and the var-
iation of the stress components for various eigenstrain distribu-
tions in the inhomogeneity with different elastic constants are
examined and are presented in Figs. 8–12. A wedge containing an
inhomogeneity stiffer than the matrix with positive eigenstrains
such that the circumferential eigenstrain is twice the radial one is
shown in Fig. 8. As expected all the radial planes of the wedge
displace outward, with the inhomogeneity expanding more than
the matrix. Furthermore, on the circular boundary σ̂ rr is negative
in the inhomogeneity, positive in the matrix, and discontinuous at
the inhomogeneity–matrix interface. Note that σ̂ θθ is compressive
almost everywhere on the circular boundary except for some small
regions close to the lateral boundaries.

Fig. 9 depicts an inhomogeneity placed in a stiffer matrix with
anisotropic eigenstrains such that the radial eigenstrain is twice
the circumferential one. It is observed that σ̂ θθ is tensile on the
circular boundary. Moreover, σ̂ θθ and σ̂ rr are almost uniform in the
inhomogeneity. For a wedge having an inhomogeneity stiffer than
the matrix with negative circumferentially dominated eigen-
strains, all the radial planes are contracted. In addition, σ̂ rr and σ̂ θθ

are almost uniform, and σ̂ θr is almost zero in the inhomogeneity
(Fig. 10).

Inhomogeneities with purely radial and purely circumferential
eigenstrains are shown in Figs. 11 and 12, respectively. For both
cases, all the radial planes are elongated, with the inhomogeneity
expanded and the matrix shrunk in the circumferential direction.
Interestingly, the circumferential deformation is more pronounced
in the purely radial eigenstrain case while radial deformation is
more pronounced in the purely circumferential eigenstrain case.8

Unlike wedges with traction-free lateral boundaries for which a
purely circumferential eigenstrain does not induce any residual
stresses in the wedge, here residual stress is developed due to a
purely circumferential eigenstrain because the wedge can no
longer move freely in the circumferential direction. Note that σ̂ rr

and σ̂ θθ are almost uniform in the inhomogeneity for the purely
radial eigenstrain case, with σ̂ rr undergoing a jump at the in-
homogeneity–matrix interface. For the purely circumferential ei-
genstrain case, however, the stress components exhibit a different
behavior in the inhomogeneity. For instance, σ̂ rr remains con-
tinuous at the inhomogeneity–matrix interface and does not tend
to be uniform in the inhomogeneity.

3.3. Stress-free eigenstrain distributions in a wedge

In this section, we find those eigenstrain distributions that in-
duce no residual stresses. For such eigenstrain distributions, the
material manifold can be isometrically embedded into the ambient
space, i.e, φ= *G g .9 Hence, for a simply-connected body, a stress-
free eigenstrain distribution corresponds to a material metric with
8 A similar observation was made for the wedge with traction-free lateral
boundaries having an inclusion with a purely radial eigenstrain (cf. Fig. 7).

9 Equivalently, the Lagrangian strain tensor must vanish.



Fig. 8. Left: The initial and deformed configurations of a wedge with fixed lateral boundaries and the initial half angle Θ = π
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Fig. 9. Left: The initial and deformed configurations of a wedge with fixed lateral boundaries and the initial half angle Θ = π
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Fig. 10. Left: The initial and deformed configurations of a wedge with fixed lateral boundaries and the initial half angle Θ = π
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Fig. 11. Left: The initial and deformed configurations of a wedge with fixed lateral boundaries and the initial half angle Θ = π
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Fig. 12. Left: The initial and deformed configurations of a wedge with fixed lateral boundaries and the initial half angle Θ = π
o 4
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. Right: Variation of the physical components of the Cauchy stress tensor

versus Θ at =R Ro.
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vanishing Riemannian curvature. Note that the wedge is a simply-
connected body. Curvature tensor has the following components:
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where the Christoffel symbols are defined as
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For the material metric of the wedge, the Christoffel symbol
matrices read
The non-trivially non-zero components of the curvature tensor

for the cylinder with the metric G are
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Therefore, in order for an eigenstrain distribution to be stress-free
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in a wedge, it needs to satisfy the following non-linear ordinary
differential equation:

ω Θ ω Θ ω Θ ω Θ− ′ ( ) ′ ( ) + ′( ) + ″( ) = ( )Θ 0. 3.74R R R
2

Using this ODE, given ω Θ( )Θ , ω Θ( )R is expressed as
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Remark 3.7. In the special case of ω ω Θ ω Θ= ( ) = ( )ΘR , we have a
linear solution ( ω Θ Θ( ) = +c c1 2) for the stress-free eigenstrain
distribution, where c1 and c2 are constants.
4. Conclusions

In this paper we studied the residual stress field generated by a
circumferentially symmetric distribution of finite eigenstrains in
an incompressible, isotropic elastic wedge. Using a semi-inverse
method by assuming a specific class of deformations, we solved for
the deformation and stress fields in the wedge for an arbitrary
circumferentially symmetric distribution of finite eigenstrains. We
solved two examples. In the first one, we considered an inclusion
with uniform eigenstrains in a neo-Hookean wedge with traction-
free lateral boundaries and obtained exact solutions for the re-
sidual stress and deformation fields. We observed that if the ei-
genstrain distribution is purely circumferential, the pressure field
remains continuous at the inclusion–matrix interface and the
stress tensor is zero everywhere. Moreover, we observed that the
deformation of the wedge fails to be unidirectional for an inclusion
with a negative radial ω( < )01 and positive circumferential
ω( > )02 eigenstrains even for large negative values of the radial
eigenstrain. Furthermore, we found that the total wedge angle is
reduced for any value of pure dilatational eigenstrains. In the
second example, we considered a neo-Hookean wedge with
clamped lateral boundaries having a symmetric Mooney–Rivlin
inhomogeneity with uniform eigenstrains. We examined several
cases of eigenstrain distributions for different relative stiffnesses of
the inhomogeneity and the matrix. We observed that the cir-
cumferential and radial deformations are more pronounced in
wedges containing inhomogeneities with only radial and only
circumferential eigenstrains. In addition, we noticed that for a
pure radial eigenstrain distribution, σ̂ rr and σ̂ θθ are almost uniform
in the inhomogeneity, and σ̂ rr has a jump at the inhomogeneity–
matrix interface. In contrast, for a pure circumferential eigenstrain
distribution σ̂ rr and σ̂ θθ are nonuniform in the inhomogeneity, with
σ̂ rr being continuous at the inhomogeneity–matrix interface.
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