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A rigorous proof for convergence of the Wolf method (Wolf et al., 1999 [9]) for calculating electrostatic
energy of a periodic lattice is presented. In particular, we show that for an arbitrary lattice of unit cells,
the lattice sum obtained via Wolf method converges to the one obtained via Ewald method.
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1. Introduction

The classical Madelung problem [1] has an important role in
atomic and molecular simulations involving electrostatic interac-
tions. Consider an arbitrary lattice with a unit cell that is com-
posed of N charges {q1, . . . ,qN} and let linearly independent vec-
tors e1,e2,e3 ∈ R3 denote the lattice vectors. We assume the
charge neutrality condition for the unit cell, i.e.,

∑N
i=1 qi = 0. Then

the Madelung problem for calculation of the total electrostatic en-
ergy of the unit cell located at the origin can be expressed as

Ecell = 1

2

N∑
i, j=1

qiq j

∑′

n∈Z3

|Vn + ri j|−1, (1)

where V = [e1e2e3] ∈ R3×3 (the matrix with lattice vectors as its
columns) and ri j = ri − r j , where ri denotes the atomic position
within the unit cell. The prime on the summation emphasizes that
we exclude self-energy, i.e., for n = 0 the term i = j is omitted.
In order to be able to use the well-established theory of multi-
dimensional zeta functions [2], we introduce the following non-
standard representation of electrostatic energy of a unit cell in an
arbitrary lattice:

Ecell = 1

2

N∑
i, j=1

qiq j

∑′

n∈Z3

[
1

2
(n + pi j)

TQ(n + pi j)

]−1/2

, (2)

where T stands for matrix transport and Q ij = 2ei ·e j is a positive-
definite matrix (twice the metric tensor), pi j = Uri j with U = V−1
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and the prime on the summation denotes the exclusion of the
self-energy. For example, for an orthorhombic lattice with lattice
parameters a = |e1|, b = |e2| and c = |e3| we have

Q =
(2a2 0 0

0 2b2 0
0 0 2c2

)
, U =

⎛
⎝

1
a 0 0
0 1

b 0
0 0 1

c

⎞
⎠ . (3)

For a hexagonal lattice with unit cell vectors

e1 =
(a

0
0

)
, e2 =

⎛
⎜⎝

1
2 a

√
3

2 a

0

⎞
⎟⎠ , e3 =

(0
0
c

)
, (4)

where a and c are unit cell parameters, we have

Q =
(2a2 a2 0

a2 2a2 0
0 0 2c2

)
, U =

⎛
⎜⎝

1
a − 1√

3a
0

0 2√
3a

0

0 0 1
c

⎞
⎟⎠ . (5)

One method of calculating the above lattice sum is to use direct
sums. However, it is a well-known fact that (2) is a condition-
ally convergent series, which means that (2) is meaningless unless
the order of summation of the terms is specified. It is interesting
to note that summation over regions that may seem to be nat-
ural can diverge. As an example, for a 3-dimensional NaCl-type
ionic crystal, it was shown that this lattice sum does not converge
over expanding spheres [3], expanding ellipsoids, and some spe-
cific expanding polygons [4], but it would converge for expanding
cubes [3]. The direct summation method is not practical due to the
slow rate of convergence.

Another method for dealing with (2) is to find some analytic
continuation for this expression over the complex plane and then
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to find some fast converging series to evaluate this analytic contin-
uation. The celebrated Ewald method [5] uses this procedure. One
can write Ecell as

Ecell = 1

2

N∑
i, j=1

qiq j ZQ(1,pi j), (6)

with

ZQ(s,p) =
∑′

n∈Z3

[
1

2
(n + p)TQ(n + p)

]−s/2

, (7)

where again the prime denotes the exclusion of any infinite sum-
mands. ZQ(s,p) is a special case of the general Epstein zeta func-
tions [2,6]. It is known that ZQ(s,p) is uniformly and absolutely
convergent for any complex number s with Re(s) > 3 and it has a
meromorphic continuation to the whole complex s-plane [6,2,7].
From here on, by ZQ(s,p) we mean its analytic continuation.
ZQ(s,p) is analytic everywhere except for the simple pole at s = 3
with the residue [2]

Res
s=3

ZQ(s,p) = (2π)3/2

Γ (3/2)
√

det Q
= 25/2π√

det Q
. (8)

Using some special functions, it is possible to write ZQ(s,p) and
thus Ecell in terms of a rapidly converging series that recovers the
standard Ewald method [8,6].

Determining the relation between the above-mentioned two
methods is not a straightforward task. Specifically, in what order
one should sum the terms of the series (2) to obtain the Ewald’s
result? Borwein et al. [3] showed that for NaCl-type crystals, sum-
ming over cubes would yield the Ewald result. It is interesting to
note that

∑′
n∈Z3 |n + r|−1 is not a convergent series and since all

of the summands are positive, partial sums of this series would
be unbounded. Thus, it is meaningless to expect to find ZQ(1,p)

using direct sums.
As we mentioned earlier, for NaCl-type crystals direct summa-

tion over expanding cubes converges while summation over ex-
panding spheres diverges. One may guess that what makes the
expanding cubes to converge is that, unlike expanding spheres,
each cube is charge neutral, and thus it may be possible to ob-
tain a converging sequence over spheres if one somehow converts
the regular spheres to charge neutral ones. This is the main idea
of the Wolf method [9] and the earlier work of Buhler and Cran-
dall [10]. In particular, for a general lattice of charges, Wolf et al.
[9] suggested that putting a mirror charge on the surface of sphere
for each charge inside the sphere and neglecting the charges out-
side the sphere results in a convergent sequence that converges to
the result obtained via Ewald method. Although they verified their
method by considering several numerical examples, they did not
present a rigorous proof.

In this Letter, we present the missing proof of the convergence
of Wolf’s method for calculating electrostatic energy of an arbitrary
lattice of charges. We should mention that Buhler and Crandall
[10] presented a proof for NaCl lattice with unit charges. Here we
generalize their proof to arbitrary lattices. Note that Wolf et al. [9]
presented two different methods, namely, damped and undamped
methods. Here by Wolf method we mean the undamped method.
In Section 2 we present the proof and in Section 3 we mention
some concluding remarks and future directions.

2. Proof of the convergence of Wolf’s method

We use the contour integral method of [10] to prove the con-
vergence of Wolf’s method. Let us first review the required prelim-
inaries. We consider the following analytic continuation of (2)

E(Q, s) = 1

2

N∑
i, j=1

qiq j

∑′

n∈Z3

[
1

2
(n + pi j)

TQ(n + pi j)

]−s/2

= 1

2

N∑
i, j=1

qiq j ZQ(s,pi j). (9)

Note that E(Q,1) = EEwald = Ecell. Let Ψ (x) denote the function

Ψ (x) =
⎧⎨
⎩

0, x < 1,
1
2 , x = 1,

1, x > 1.

(10)

Then, for R ∈ R+ , where R+ is the set of the positive real numbers,
define the spherically truncated (finite) sum

E R(Q, s) = 1

2

N∑
i, j=1

qiq j

∑′

n∈Z3

{
Ψ

(
R

[ 1
2 (n + pi j)

TQ(n + pi j)]1/2

)

×
[

1

2
(n + pi j)

TQ(n + pi j)

]−s/2}
. (11)

Note that E R(Q, s) roughly denotes the direct sum of (2) over
spheres centered at charges in the unit cell located at the origin
with radius R . From (10) one can see that if

R = R(n,pi j) :=
[

1

2
(n + pi j)

TQ(n + pi j)

]1/2

, (12)

for some values of i, j, and n, then the charges located on the
surface of the sphere would have the additional weight of 1/2.
But this would be irrelevant in our analysis because as we will
see in the sequel, we are interested in the behavior of a continues
function of R as R → ∞. This can be expressed in term of E R(Q, s)
if R does not take the discrete values R(n,pi j) for n ∈ Z3 and
i, j = 1, . . . , N , and so we can exclude those values.

In the Wolf method one considers spheres with radii R cen-
tered at each charge of the unit cell at the origin and puts a
mirror charge on the surface of the sphere for each charge inside
the sphere including center charges. Then energy of the unit cell,
EWolf, is calculated using only charges located on and inside these
spheres. This can be written as

EWolf = lim
R→∞

[
E R(Q,1) − 1

R
E R(Q,0) − 1

R

N∑
i=1

q2
i

]
. (13)

But for a lattice with N charges in its unit cell, the term
∑N

i=1 q2
i

is bounded, and thus we have

EWolf = lim
R→∞

[
E R(Q,1) − 1

R
E R(Q,0)

]
. (14)

For c ∈ R+ , Perron’s formula states that [11]

1

2π i

c+i∞∫
c−i∞

Rs

s
ds = Ψ (R). (15)

Finally, for any c, T ∈ R+ with c > 3 let αc,T be the contour in
the complex s-plane depicted in Fig. 1. Also let ST = {s ∈ C | 0 <

Re(s) < 3 and |Im(s)| < T }. Then, the following Lemma holds.

Lemma. Let ε ∈ R+ . Then there exist c, T ∈ R+ with c > 3, such that
for any w ∈ ST the following relation holds as R → ∞:

Iα = 1

2π i

∫
αc,T

ZQ(s,p)Rs

s(s − w)
ds = O

(
Rε

)
. (16)
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Fig. 1. The contour αc,T in the complex s-plane.

Proof. Let s = σ + it and Iα = ∑5
i=1 Ii , where

I1 = 1

2π i

c−iT∫
c−i∞

ZQ(s,p)Rs

s(s − w)
ds,

I2 = 1

2π i

3−c−iT∫
c−iT

ZQ(s,p)Rs

s(s − w)
ds,

I3 = 1

2π i

3−c+iT∫
3−c−iT

ZQ(s,p)Rs

s(s − w)
ds,

I4 = 1

2π i

c+iT∫
3−c+iT

ZQ(s,p)Rs

s(s − w)
ds,

I5 = 1

2π i

c+i∞∫
c+iT

ZQ(s,p)Rs

s(s − w)
ds. (17)

We are going to show that all of the above integrals are bounded.
For I1 and I5 we have |ZQ(s,p)| = |ZQ(c,p)|, |Rs| = Rc and
[s(s − w)]−1 = O (t−2). Thus, these integrals are O (Rc T −1).

Using the standard methods of analytic number theory and
the Phragmén–Lindelöf theorem [12,11], we find that |ZQ(s,p)| =
O (tc−3/2) for 3 − c < σ < c, and hence I2 and I4 are O (Rc T c−7/2).
If 3 < c < 7/2 and T = R7/(7−2c) , we can conclude that I1, I2, I4
and I5 are O (Rε) for any ε > 0.

Next, note that [2]

ZQ(s,p) =
∑′

n∈Z3

[
1

2
(n + p)TQ(n + p)

]−s/2

=
∑′

n∈Z3

|An − d|−s =: ζA(s,d), (18)

where A is a matrix with nonzero determinant. Define

ΛA(s,d) = √
det Aπ−s/2Γ

(
s

2

)
ζA(s,d). (19)

Then, we have the following functional equation [7]

ΛA(s,d) = eπ |d|2iΛB(3 − s,0), (20)

where B = A−T with −T denoting the inverse transpose. Substitut-
ing (19) into (20) yields

ζA(s,d) = eπ |d|2iπ s−3/2Γ [ 1
2 (3 − s)]

det AΓ ( s
2 )

ζB(3 − s,0). (21)

Now we replace s by 3 − s in I3 and use (18) and (21) to write the
integral over the upper half segment as

1

2π i

3−c+iT∫
3−c

ZQ(s,p)Rs

s(s − w)
ds

= 1

2π i

c+iT∫
c

ZQ(3 − s,p)R3−s

(s − 3)(s + w − 3)
ds

= 1

2π i

c+iT∫
c

ζA(3 − s,d)R3−s

(s − 3)(s + w − 3)
ds

= eπ |d|2iπ1/2

2(det A)i

c+iT∫
c

π−sΓ ( s
2 )ζB(s,0)R3−s ds

Γ [ 1
2 (3 − s)](s − 3)(s + w − 3)

= eπ |d|2iπ1/2

2(det A)i

∑′

n∈Z3

c+iT∫
c

π−sΓ ( s
2 )|An|−s R3−s ds

Γ [ 1
2 (3 − s)](s − 3)(s + w − 3)

,

(22)

where in the last step, since c > 3, we use the fact that ζB(s,0)

is uniformly and absolutely convergent over the integration path.
Stirling’s formula states that for any fixed strip α � σ � β , as
t → ∞ [11]

log
[
Γ (σ + it)

]
=

(
σ + it − 1

2

)
log(it) − it + 1

2
log(2π) + O

(
t−1). (23)

Using (23), we conclude that to bound (22) one needs to bound

R3−c
∑

n∈Z3

|An|−c

T∫
t0

tc−7/2ei[t log(t)−t−t log(π R|An|)] ds, (24)

where t0 > 0 is an arbitrary constant. But using the method of
stationary phase [13], it can be shown that this integral is O (log R)

[10] and so I3 is O (Rε) for ε > 0. To summarize, we have proved
that I1, . . . , I5 are O (Rε) for ε > 0 and hence (16) holds. �

Now we state the main result of this Letter.

Theorem. There exists T ∈ R+ such that if s ∈ ST then

E(Q, s) = lim
R→∞

[
E R(Q, s) − 1

Rs
E R(Q,0)

]
. (25)

In particular, setting s = 1 yields

Ecell = E(Q,1)

= lim
R→∞

[
E R(Q,1) − 1

R
E R(Q,0)

]
= EWolf. (26)

Proof. Choose c, T ∈ R+ in accordance with the previous Lemma
and let w ∈ ST . Consider the integral

I = 1

2π i

c+i∞∫
c−i∞

E(Q, s)Rs

s − w
ds

= 1

2π i

c−Re(w)+i∞∫
c−Re(w)−i∞

E(Q, s + w)Rs+w

s
ds. (27)
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Note that since c > 3, the contour of the integral is in the region of
the uniform and absolute convergence of (2). Also c − Re(w) > 0,
and hence using (15) one can write (27) as

I = 1

2π i

c−Re(w)+i∞∫
c−Re(w)−i∞

{
Rs+w

s

× 1

2

N∑
i, j=1

qiq j

∑′

n∈Z3

[
1

2
(n + pi j)

TQ(n + pi j)

]−(s+w)/2
}

ds

= R w

2

N∑
i, j=1

qiq j

∑′

n∈Z3

[
1

2
(n + pi j)

TQ(n + pi j)

]−w/2

× 1

2π i

c−Re(w)+i∞∫
c−Re(w)−i∞

(
R

[ 1
2 (n + pi j)

TQ(n + pi j)]1/2

)s ds

s

= R w

2

N∑
i, j=1

qiq j

∑′

n∈Z3

[
1

2
(n + pi j)

TQ(n + pi j)

]−w/2

× Ψ

(
R

[ 1
2 (n + pi j)

TQ(n + pi j)]1/2

)

= R w E R(Q, w). (28)

Let

F w(Q, s) = E(Q, s)Rs

s(s − w)
. (29)

Then, we use (28) to write

1

2π i

c+i∞∫
c−i∞

F w(Q, s)ds

= 1

2π i

c+i∞∫
c−i∞

[
E(Q, s)Rs

w

(
1

s − w
− 1

s

)]
ds

= 1

w

[
R w E R(Q, w) − E R(Q,0)

]
, (30)

or equivalently

1

2π i

c+i∞∫
c−i∞

F w(Q, s)ds = R w

w

[
E R(Q, w) − 1

R w
E R(Q,0)

]
. (31)

Next we choose the contour αc,T as in Fig. 1. Let β denote the
rectangle with vertices S1, S2, S3 and S4 (see Fig. 1). We have

1

2π i

c+i∞∫
c−i∞

F w(Q, s)ds − 1

2π i

∫
αc,T

F w(Q, s)ds

= 1

2π i

∫
β

F w(Q, s)ds. (32)

One can use Cauchy’s Residue Theorem to calculate the right side
of (32). Referring to (29), it is evident that F w(Q, s) has simple
poles at s = 0 and s = w and may have a simple pole at s = 3.
Since E(Q, s) is analytic at s = 0 and s = w , we obtain

Res
s=0

F w(Q, s) = −w−1 E(Q,0), (33)

Res
s=w

F w(Q, s) = w−1 R w E(Q, w). (34)

To calculate the residue at s = 3 we use (29) and (8) to write

Res
s=3

F w(Q, s) = R3

3(3 − w)
Res
s=3

E(Q, s)

= R3

6(3 − w)

N∑
i, j=1

qiq j

[
Res
s=3

ZQ(s,pi j)
]

= 23/2π R3

3(3 − w)
√

det Q

N∑
i, j=1

qiq j

= 23/2π R3

3(3 − w)
√

det Q

(
N∑

i=1

qi

)2

= 0, (35)

where we used the charge neutrality condition for the unit cell
in the last step. Thus, we have shown that although ZQ(s,p) has
a simple pole at s = 3, charge neutrality implies that residue of
F w(Q, s) at s = 3 vanishes. Therefore, using Cauchy’s Residue The-
orem and Eqs. (33), (34), and (35) we conclude that

1

2π i

∫
β

F w(Q, s)ds = −w−1 E(Q,0) + w−1 R w E(Q, w). (36)

Substituting (31) and (36) into (32) results in

1

2π i

∫
αc,T

F w(Q, s)ds

= R w

w

[
E R(Q, w) − 1

R w
E R(Q,0)

]
+ w−1 E(Q,0)

− w−1 R w E(Q, w). (37)

On the other hand, with the aid of (9), (16), and (29) the left side
of (37) can be written as

1

2π i

∫
αc,T

F w(Q, s)ds = 1

2

N∑
i, j=1

qiq j
1

2π i

∫
αc,T

ZQ(s,pi j)Rs

s(s − w)
ds

= O
(

Rε
)
, (38)

for an arbitrary ε > 0. Thus, (37) becomes

E R(Q, w) − 1

R w
E R(Q,0)

= − 1

R w
E(Q,0) + E(Q, w) + R−w O

(
Rε

)
. (39)

Since Re(w) > 0, upon taking the limit of (39) as R → ∞ and
replacing w with s, we obtain (25). This completes the proof. �
3. Concluding remarks

A rigorous proof for the Wolf method is given in this Letter.
However, there are still some open questions. As we mentioned
earlier, we prove that the undamped Wolf method converges to
the Ewald sum. But usually the undamped method converges very
slowly and this makes it unfavorable in practice. To resolve this
issue, Wolf et al. [9] modified their method and introduced the
damped method. The electrostatic energy computed via damped
method, E D

Wolf, is

E D
Wolf = lim

R→∞ E D
R (Q,1), (40)

where
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E D
R (Q, s) = 1

2

N∑
i, j=1

qiq j

×
∑′

n∈Z3,R(n,pi j)�R

{
erfc(α[ 1

2 (n + pi j)
TQ(n + pi j)]1/2)

[ 1
2 (n + pi j)

TQ(n + pi j)]s/2

− erfc(αR)

R

}
−

(
erfc(αR)

2R
+ α√

π

) N∑
i=1

q2
i , (41)

with

erfc(x) = 1 − erf(x), erf(x) = 2√
π

x∫
0

e−t2
dt. (42)

Since limx→∞ erfc(x) = 0, using (26) we obtain

E D
Wolf − Ecell

= − lim
R→∞

{
1

2

N∑
i, j=1

qiq j

×
∑′

n∈Z3,R(n,pi j)�R

[
erf(α[ 1

2 (n + pi j)
TQ(n + pi j)]1/2)

[ 1
2 (n + pi j)

TQ(n + pi j)]1/2

− erf(αR)

R

]}
− α√

π

N∑
i=1

q2
i . (43)

Although the damped method converges fast, it converges to val-
ues that depend on the damping parameter and crystal structure
[9,14]. This means that the right side of (43) converges to values
that depend on α. Thus, it does not seem that one can prove a
theorem counterpart to the one presented here for the undamped
method. But one may find an interval(s) for the values of the
damping parameter to control the error of the damped method.

Also it is interesting to note that the variation of the calculated en-
ergy versus the radius of the charge natural sphere depends on the
crystal structure: it may have an oscillatory behavior as for NaCl
crystal [9] or non-oscillatory behavior as for PbTiO3 crystal [14].

We saw that the charge neutralization idea works for spheri-
cal expanding domains. One may want to see if this idea would
work for other (convex) domains as well. Answer to this ques-
tion can help to justify the use of the Wolf method for other
geometries like free surfaces, slabs and regions near crystal de-
fects. Besides calculating energy, Wolf et al. [9] proposed a method
for obtaining forces exerted on charges again without a rigorous
proof. As force is a vector quantity, there is an ambiguity on how
one should project mirror charges on the surface of the sphere.
Since energy only depends on the distance between charges such
ambiguity does not arise in the calculation of energy. A rigorous
study of the above questions will be a very interesting extension
of the present work.
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