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Abstract
In this paper, a geometric field theory of dislocation dynamics and finite plasticity in
single crystals is formulated. Starting from the multiplicative decomposition of the
deformation gradient into elastic and plastic parts, we use Cartan’s moving frames
to describe the distorted lattice structure via differential 1-forms. In this theory, the
primary fields are the dislocation fields, defined as a collection of differential 2-forms.
The defect content of the lattice structure is then determined by the superposition
of the dislocation fields. All these differential forms constitute the internal variables
of the system. The evolution equations for the internal variables are derived starting
from the kinematics of the dislocation 2-forms, which is expressed using the notions
of flow and of Lie derivative. This is then coupled with the rate of change of the lattice
structure throughOrowan’s equation. The governing equations are derived using a two-
potential approach to a variational principle of the Lagrange–d’Alembert type. As in
the nonlinear setting the lattice structure evolves in time, the dynamics of dislocations
on slip systems is formulated by enforcing some constraints in the variational principle.
Using theLagrangemultipliers associatedwith these constraints, one obtains the forces
that the lattice exerts on the dislocation fields in order to keep them gliding on some
given crystallographic planes. Moreover, the geometric formulation allows one to
investigate the integrability—and hence the existence—of glide surfaces, and how the
glide motion is affected by it. Lastly, a linear theory for small dislocation densities
is derived, allowing one to identify the nonlinear effects that do not appear in the
linearized setting.
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1 Introduction

The mechanics of plasticity and defects in crystalline solids has a close connection
with differential geometry. Plasticity is a phenomenon that falls under the broader
category of anelasticity, which is the study of solids that carry residual stresses. In
particular, anelasticity revolves around the concept of material metric tensor, describ-
ing local natural distances in a solid, and distributions of eigenstrains (Reissner 1931).
Therefore, the natural framework for describing plasticity as a source of eigenstrains
is Riemannian geometry (Eckart 1948), the main predictor of residual stresses being
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the three-dimensional Riemann curvature tensor. On the other hand, plasticity can be
seen as the study of deformation of a solid in relation to its microstructure, containing
more information than the simple change in the natural distances considered in anelas-
ticity. In this case, the exterior algebra of differential forms provides a description of
the lattice structure and of the line defects associated with it. Differential geometry
offers a natural framework for a continuum theory of dislocation plasticity, and of
crystallographic defects in general. Although geometric theories for the analysis of
equilibrium configurations of distributed defects in nonlinear solids are available in
the literature (Gairola 1979; Rosakis and Rosakis 1988; Zubov 1997; Acharya 2001;
Yavari and Goriely 2012a, b, 2013, 2014; Yavari 2016; Golgoon and Yavari 2018),
geometric formulations for dislocation dynamics in the nonlinear setting have not been
developed systematically to this date. This is due to its complexity; for instance, when
finite deformations are allowed, the lattice structure is time dependent, and therefore
crystallographic planes deform into surfaces, and they can even cease to exist.

The mathematical theory of the mechanics of dislocations and disclinations was
formulated by Vito Volterra in a series of papers from 1905 to 1907, which were
summarized in (Volterra, 1907) [for a recent English translation of this paper, see
Delphenich (2020)]. A few decades later, Taylor (1934); Orowan (1934) and Polanyi
(1934) were the first to realize that themotion of dislocations facilitates crystal slip and
is the micro-mechanism of plastic deformation in crystals. The interaction between
dislocations and the elastic field was studied by Peach and Koehler (1950), who pro-
vided the first expression for what is now commonly known as the Peach–Koehler
force. The notion of dislocation density tensor was introduced by Nye (1953),1 while
the first geometric formulations of plasticity are due to Bilby et al. (1955), Kondo
(1955), Kröner (1959, 1962), and of Noll (1967) and Wang (1968).

More recently, new contributions to the geometric theory of dislocation plasticity
have been made. Examples are Clayton et al. (2005), who proposed a novel three-term
decomposition of the deformation gradient, and Yavari and Goriely (2012b), who
formulated a geometric theory of solids with distributed dislocations using Cartan’s
moving frames. Epstein and Segev introduced a geometric framework for discrete
dislocations using de Rham’s currents (Epstein and Segev 2014a, b, 2015, 2020) . This
tool has recently been used in dislocation dynamics by Starkey et al. (2022). Sozio and
Yavari (2020) studied different formats of the governing equations for anelastic solids
in both the standard and configurational frameworks. Both the underlying Euclidean
structure inherited by the ambient space and the Riemannian structure induced by the
material metric were considered. It is also worth mentioning that Trzęsowski (1997)
was perhaps the first to investigate the issue of the integrability of slip surfaces, and
to look at crystals as foliated manifolds.

Aside from the geometric approach, in the past two decades several field dislocation
mechanics formulations have been proposed whose focus has been the study of the
formation of dislocation patterns and structures at the mesoscale from a continuum
perspective. Examples are the works of Acharya (2001), Cermelli and Gurtin (2001),
andGurtin (2002). Sedláček et al. (2003, 2007) provided an accurate description of the

1 See (Sozio and Yavari, 2021) for a recent study of Nye’s lattice curvature tensor using Cartan’s moving
frames.

123



   83 Page 4 of 83 Journal of Nonlinear Science            (2023) 33:83 

linear kinematics of dislocations, introducing the concept of virtual motion. Zhu et al.
(2013) investigated the instability of the dislocation motion due to the cross-slip of the
screw segments. Xia and El-Azab (2015a, b) proposed a continuum description as a
smeared representation of discrete distributions, in which the occurrence of cross-slip
is regulated by a probability function.

Recent years have witnessed the development of many statistical theories of con-
tinuum dislocation dynamics. As opposed to geometrically necessary dislocations,
statistically stored dislocations are responsible for strain hardening and cannot be
deduced through purely geometric arguments (Ashby 1970; Arsenlis and Parks 1999).
We shouldmention theworks of El-Azab (2000), Groma et al. (2003), Hochrainer et al.
(2007), El-Azab et al. (2007) and Hochrainer (2016). The existing theories of dislo-
cation dynamics were recently reviewed by McDowell (2019), while some recent
developments in plasticity were reviewed by Steigmann (2020).

Our goal in this paper is to formulate a geometric theory for nonlinear field disloca-
tionmechanics in single crystals. In the geometric setting, plastic slip, crystallographic
planes, and distributed dislocations are described by differential forms on a Rie-
mannian manifold. These fields constitute the internal state variables of the model
(Coleman and Gurtin 1967; Rice 1971; Lubliner 1973). The kinetic equations for the
internal variables are derived through a variational approach in the presence of non-
holonomic internal constraints. Variational methods in plasticity have already been
used in the works of Hackl (1997); Ortiz and Repetto (1999); Berdichevsky (2006);
Junker et al. (2014), and as well as in the recent paper by Acharya (2022). We should
alsomention thework of Po andGhoniem (2014) for variational approaches to the ther-
modynamics of discrete dislocations. We will use a two-potential approach (Halphen
and Nguyen 1975; Germain et al. 1983), in which all the constitutive equations can be
derived from two functions of the internal variables and their rates. This is similar to
the approach of Ziegler (1958) and Ziegler and Wehrli (1987) based on a dissipation
function expressing the entropy production. In particular, we propose a deterministic
mesoscale theory, in which the evolution of dislocations is only due to their glide
motion, while sources/sinks of dislocations and climb are neglected. However, non-
local and micro-inertial effects are included. The main contributions of this paper can
be summarized as follows.

• Ametric-free formulationof dislocationfields is presentedusingdifferential forms.
The incompatibility of the lattice structure is written as the superposition of a
number of dislocation fields.

• The kinematics of dislocations is formulated using the notion of flow and Lie
derivative. It is shown that Orowan’s equation is consistent with the geometric
formulation.

• The integrability of crystallographic planes in relation to the dislocated lattice
is investigated. We discuss the consequences of the non-integrability of the slip
planes on the glide of dislocations.

• The governing equations are derived variationally, using a two-potential approach
to include dissipation. This allows one towrite the kinetic equations for the internal
variables without assuming specific forms for the constitutive model. The only
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constitutive assumptions that are made are those that guarantee frame indifference,
the second law of thermodynamics, etc.

• Lagrange multipliers are used to enforce lattice constraints directly in the varia-
tional formulation through the methods of non-holonomic mechanics.

• A linearized theory in the case of small dislocation densities is derived. We study
how the defect content of the lattice structure affects the linearized dynamics of
dislocations.

This paper is organized as follows. In Sect. 2, we review nonlinear plasticity and
introduce the concept of distorted lattice structure in the material manifold, given by a
frame field representing the underlying crystallinemicrostructure. In Sect. 3, we define
decomposable dislocationfields and discuss some convenient decompositions.We also
study the case of layered dislocation fields and introduce the notion of integrability
of the slip planes. Section 4 is devoted to the kinematic description for the internal
variables in terms of some evolution equations. Dislocation fields are assumed to be
convected by a material motion, while the lattice differential forms evolve according
to Orowan’s equation.We study the glidemotion and its relations with the integrability
of slip plane distributions. In Sect. 5, we introduce the variational formulation, using
an action principle of the Lagrange–d’Alembert type and a two-potential approach.
We study the geometric constraints that the lattice puts on the dislocation fields, and
their effect on the equations of motion for the dislocation fields. We also derive the
balance of energy. In Sect. 6, we introduce a simplifiedmodel for nonlinear dislocation
mechanics. In particular, we assume a purely hyperelastic free energy and derive an
expression for the Peach–Koehler force.We also propose a penalty approach to include
the effect of the Peierls stress in the dissipation potential. In Sect. 7, we formulate
a linearized theory and look at how the initial lattice structure affects the glide of
dislocation fields. Conclusions are given in Sect. 8.

Notation.Given amanifoldB, we denote with TB the union of all tangent spaces TXB
for X ∈ B. Given a diffeomorphism f of manifolds, we indicate with f∗ and f ∗ the
pushforward and the pullback operators, respectively.We denote differential forms and
vector and tensor fields using bold letters. Frames, coframes and all triplets of fields
are denoted with Greek symbols and curly brackets, e.g., { f ν}, where ν = 1, 2, 3 is
implied. Coordinate functions are denoted as in (Zν). Dislocation fields and associated
quantities are indexed using gothic symbols, e.g., the dislocation velocities

a

U . With an
abuse of notation, thismight indicate a single field or thewhole collection depending on
the context.WeuseEinstein’s summation convention for lattice components andGreek
indices, but not for gothic indices. The symbol δμν as well as δAB denotes Kronecker’s
delta, while δ without indices is used to denote variations and perturbations. Pairings
of 1-forms with vectors are denoted as 〈γ , V 〉, and in components γAV A. It extends to
tensors of any order. We also denote with 〈A, B〉 the natural pairing of dual objects A
and B, such as tensor contraction or a form-multivector pairing.2 The scalar product
associated with a metric M is denoted by 〈〈, 〉〉M , and in components 〈〈V ,W〉〉M =
V AW BMAB . The raising and lowering of indices via a metric is denoted with the
musical operators � and �, where themetric used is implied (usually thematerial metric

2 The pairing of a k-form with a k-multivector can be seen as a tensor contraction operated on the
(3
k
)

independent index combinations.
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G). Given an operator A, its dual is denoted with A� and is such that 〈γ , AV 〉 =
〈A�γ , V 〉. It should not be confused with the adjoint (transpose), that is, a metric-
dependent notion, i.e., 〈〈TV ,W〉〉 = 〈〈V , T�W〉〉. As differential forms are mainly
considered in the context of exterior algebra, we use the same symbol 0 for the zero
form. Instead, when treating tensors, such as vectors and operators, a zero tensor is
denoted with 0. The wedge operator ∧ is the exterior product of forms. ιX is the
interior product of a form with the vector X , and d denotes the exterior derivative of
differential forms. The derivative of a scalar f along the vector V is denoted with
〈d f , V 〉. The advantage of using differential forms is due to the fact that one can
reduce the methods of vector calculus to the exterior algebra of differential forms,
which is a metric-free description. This is particularly important in the case of non-
Euclidean solids, whose natural distances cannot be represented by the standardmetric
in R

3. However, there are strong analogies between exterior and vector calculi. For
example, the wedge product between two 1-forms works exactly as a cross-product of
vectors. Also, replacing a 2-form with the axial vector associated with it, its exterior
product with a 1-form becomes similar to a scalar product, while its interior product
with a vector works as a cross-product. Moreover, a closed differential 1-form is the
analogue of an irrotational vector field, while a closed 2-form can be associated with
a divergence-free vector field. We discuss all this in detail in Appendix A.

2 The Lattice Structure

In addition to the multiplicative decomposition of the deformation gradient (Sadik
and Yavari 2017), anelasticity, and in particular plasticity, can be formulated using
differential forms (Yavari and Goriely 2012b). This is a natural formulation as it
allows the study of dislocation plasticity through the use of exterior algebra. In this
section, we review some concepts of finite plasticity, and provide some insight on
the notion of lattice structure. Starting from the multiplicative decomposition of the
deformation gradient, we show that at the continuum scale a crystal can be modeled
as a material manifold endowed with a triplet of differential 1-forms representing the
underlying crystalline microstructure, and providing information on the distribution
of defects.

2.1 TheMultiplicative Decomposition of the Deformation Gradient

Wework in the framework of continuummechanics and consider smooth embeddings
ϕ : B → S representing configurations of a three-dimensional material body B in the
three-dimensional ambient space S. The ambient space is endowed with a Euclidean
metric g, expressing the standard scalar product defining distances and angles in the
ambient space. In a continuum theory, crystalline solids carry additional information
about the order with which particles are arranged in the discrete lattice, e.g., directions
of periodicity, crystallographic symmetries, etc. We will be referring to this informa-
tion as undistorted lattice structure. The fundamental idea in modeling plasticity is
that, during motion, the lattice structure does not deform via the macroscopic motion,
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Fig. 1 An example of (discontinuous) plastic and elastic deformations. A parallelogram indicates an
infinitesimal piece of material where the deformation can be assumed homogeneous. The lighter grid
indicates the lattice structure in every chunk of material. Each arrow is labeled with a map of material
points and, in parentheses, a map for the lattice structure. The classical multiplicative decomposition of
deformation gradient is described by the configurations (a), (b) and (c), while the geometric formalism only
uses the configurations (d) and (c). Note that the lattice structure in both (d) and (c) is incompatible at the
interface, whence the presence of defects

i.e., the mapping that takes the material points to their current placements. This is
based on the fact that plastic slip leaves the crystalline order unaltered, so that the
only deformation that the lattice structure undergoes is by definition the elastic one.
More precisely, the deformation gradient F = Tϕ is multiplicatively decomposed
into plastic and elastic parts as F = FEFP, where FP is a tensor field on B, and
FE is a two-point tensor field, both of type (1, 1), i.e., FP(X) : TXB → TXB, and
FE(X) : TXB → Tϕ(X)S for all points X ∈ B.3 Both FP and FE are assumed invertible
and orientation-preserving.

The decomposition F = FEFP is to be interpreted in the following way: Starting
from an undistorted body, material points plastically deform via FP with respect to
fixed lattice directions, and then, the entire ensemble of “slipped material points and
lattice structure” is mapped via FE to the deformed configuration, see Fig. 1. For our
purposes, a periodic lattice structure on B can be represented by a Cartesian frame.
Although B has not been endowed with any metric yet, Cartesian coordinates (Zν)

can be pulled back from the ambient space together with the standard metric via the
use of a reference configuration map. More precisely, we take Zν = zν ◦ κ , where
(zν) are some Cartesian coordinates on S, and κ : B → S is an embedding that fixes
a reference configuration for B. These coordinates induce a Cartesian frame

{
∂

∂Zν

}

and coframe {dZν}, representing the undistorted lattice structure. Clearly,
{

∂
∂Zν

}
is

orthonormal with respect to the Euclidean metric κ∗g on B, representing distances
in the ideal lattice. By assumption, the lattice structure is mapped to the deformed
configuration via the elastic deformation FE, to obtain the deformed lattice structure{
FE

∂
∂Zν

}
.

In the geometric approach, the decomposition F = FEFP is seen in the opposite
way: The lattice structure is first deformed by F−1

P with respect to fixedmaterial points
to give the distorted lattice structure, and then, the ensemble of “material points and

3 For discussions on the reverse decomposition see (Clifton 1972; Lubarda 1999; Yavari and Sozio 2023).
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distorted lattice structure” is mapped to the deformed configuration via a compatible
F = Tϕ, see Fig. 1. The distorted lattice structure is then represented by the so-called
lattice frame, a moving frame {eν} on B defined as

eν = ϕ∗ (FE
∂

∂Zν

)
, or eν = F−1

P
∂

∂Zν , (2.1)

or by the associated lattice coframe {ϑν}, a field of three 1-forms defined as

ϑν = ϕ∗ (F�
E dZ

ν
)
, or ϑν = F�

P dZν, (2.2)

and such that 〈ϑν, eμ〉 = δν
μ. All the different frames defined so far are shown in

Fig. 2. In this geometric approach, the lattice frame {eν} is material, in the sense that it
is mapped to the deformed lattice frame

{
FE

∂
∂Zν

} = {ϕ∗eν} via the configuration map
ϕ by virtue of (2.1). In other words, there is no difference between material points and
lattice structure in regard to the way they are mapped to S. Equation (2.1) can also be
written as a change of frame from the Cartesian to the lattice frame, viz.

ϑν = F
ν
μ dZμ, eν = (F−1)μν

∂
∂Zμ , (2.3)

where Fν
μ’s are the components of FP with respect to both the Cartesian coordinates

and the lattice frames:

FP = F
ν
μ

∂
∂Zν ⊗ dZμ = F

ν
μ eν ⊗ ϑμ.

This means that the lattice coframes carry direct information on FP. In order to repre-
sent the natural distances in the lattice, a material metric G on B is defined as the one
that makes the lattice frame {eν} orthonormal, viz.

G = δμν ϑμ ⊗ ϑν . (2.4)

By doing so, vectors with constant components with respect to the frame {eν} preserve
their length regardless of the evolution of the plastic deformation. Note that from (2.4),
since the Cartesian frame is orthonormal with respect to κ∗g, one has

〈〈V ,W〉〉G = 〈〈FPV , FPW〉〉κ∗g, (2.5)

for all vectors V ,W . Therefore, the plastic deformation FP is a local isometry from
(TB, G) to (TB, κ∗g).

The volume form μ = ϑ1 ∧ ϑ2 ∧ ϑ3 associated with G is called the material
volume form. Thematerial mass density ρ is a scalar onB that defines themass 3-form
m = ρμ. The Levi-Civita connection associated with G is denoted with∇. In addition
to the material metric G and the Euclidean metric κ∗g, one can define a Riemannian
metric on B by pulling back the ambient space metric g via the configuration mapping
ϕ. We denote with C� = ϕ∗g this pulled-back metric, while C = (ϕ∗g)� = F�F is
the right Cauchy-Green strain.
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Fig. 2 Moving frames representing different lattice structures in a solid. ThematerialmanifoldB is endowed

with an undistorted lattice structure represented by the frame
{

∂
∂Zν

}
, which is obtained by pulling back a

Cartesian frame
{

∂
∂zν

}
in S via a reference embedding, and with a distorted lattice structure represented

by {eν }. The deformed lattice structure {ϕ∗eν } on ϕ(B) can be thought of as obtained by applying FE to{
∂

∂Zν

}
or by applying F to {eν }

2.2 The Distorted Lattice

The Cartesian frame
{

∂
∂Zν

}
on B was introduced as a descriptor of the undistorted

lattice structure and can be viewed as a homogenized representation of the translational
symmetry of a periodic lattice. Translations induced by these vectors are commutative:
An ordered sequence of a steps along the coordinate Zμ followed by b steps along Zν

gives the same result as the reversed sequence does. In the deformed lattice structure
defined by the moving frame {ϕ∗eν} on ϕ(B), the commutativity of translations does
not necessarily hold: A translation along ϕ∗eμ followed by a translation along ϕ∗eν

is not the same operation as in the reversed sequence.4 The difference between the
undistorted lattice structure on B and the deformed lattice structure on ϕ(B) is due to
the fact that while the integral curves of

{
∂

∂Zν

}
are also coordinate curves for (Zν),

forming a grid where the commutativity of translations is clear, this is not the case for
the deformed lattice vectors {ϕ∗eν}. This commutative property of translations along
the vectors of a frame is equivalent to holonomicity, which is the property of a frame
being induced by local coordinates.

Holonomicity is not affected by pullbacks, and therefore, the dislocation content of
{ϕ∗eν} is encoded in the anholonomicity of the lattice frame {eν} that we introduced as
the descriptor of the distorted lattice structure. More precisely, a moving frame {eν} is
holonomic if there exist local coordinates (Y ν) such that eν = ∂

∂Y ν . This is equivalent
to vanishing of the Lie bracket [eμ, eν] for all μ, ν.5 This can also be expressed in
terms of its coframe as ϑν = dY ν , which is equivalent to requiring that the lattice

4 In general, translations along a vector field can be defined as translations along its integral curves. Given
a vector field V , an integral curve γ : R → B is such that its velocity is V ◦ γ .
5 Cf. Sternberg (1999), Iliev (2006), Schouten (2013). In Spivak (1970, vol. I, Chapter 5, Theorem 16), it is
also shown that [eμ, eν ] represents a second-order approximation to the gaps generated by non-commutative
translations along {eν }.
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forms be closed. Since any closed differential form is locally exact, the existence of
local coordinates (Y ν) such that ϑν = dY ν is guaranteed whenever the lattice forms
are closed. As a matter of fact, invoking (A.1) one obtains

dϑη(eμ, eν) = −〈ϑη, [eμ, eν]〉.

At the discrete level, the lack of commutativity of translations along the deformed
lattice vectors is due to the presence of dislocations. Therefore, the 2-forms dϑν are
the descriptors for the presence of distributed dislocations in the continuous setting.
In particular, the solid is dislocation-free if and only if the lattice forms are closed.

The presence of distributed dislocations can be detected by calculating the circula-
tion of the lattice coframe along a closed curve γ , viz.

Bν(γ ) =
∫

ϕ(γ )

ϕ∗ϑν =
∫

γ

ϑν =
∫

γ

F
ν
μdZ

μ. (2.6)

The scalars Bν(γ ) are usually called the components of the Burgers vector associated
with γ .6 When the closed curve γ is the only component of the boundary of a surface
�, from Stokes’ theorem (A.10)1 one can write (2.6) as

Bν(γ ) =
∫

�

j∗dϑν, (2.7)

where j : � ↪→ B denotes the inclusion map.

Remark 2.1 In this setting, the presence of defects is a local notion, in the sense that it
does not depend on the topology of the bodyB. Global compatibility, i.e., the existence
of global coordinates inducing the lattice frame, requires that the lattice forms be not
just closed but exact as well, and is therefore related to the topology of the body (Yavari
2013, 2020), whence the notion of topological defects or charges (Kupferman et al.
2015). In particular, for a closed form to be exact, one needs vanishing periods on the
generators of the first homology group.

We define the dislocation density as a triplet of vectors {αν} given by αν = ��dϑν ,
where �� is the raised Hodge operator associated with G defined in Appendix A. Note
that since ddϑν = 0, from (A.8) one necessarily has Divαν = 0 for ν = 1, 2, 3, where
Div is the divergence operator induced by thematerial volume formμ, seeAppendixA.
From the divergence theorem (A.10)2, theBurgers vector (2.6) associatedwith a closed
curve γ = ∂� can now be expressed as the flux of the corresponding vector αν across
�, viz.

Bν(γ ) =
∫

�

〈ν,αν〉 ς , (2.8)

6 Technically, Bν(γ )’s are not the components of a vector, as they are not “attached” to any point. They
are simply three numbers associated with a closed curve, see Sozio and Yavari (2020). See also Ozakin and
Yavari (2014).
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where ν is the normal 1-form on�, and ς is the area 2-form on�, both induced by G,
see Appendix A. We should also mention the existence of a Weitzenböck connection
∇(W) on B defined as the connection that parallelizes the lattice frame {eν}. The
Weitzenböck connection acts as the ordinary derivative of the components of a tensor
with respect to the lattice frame (Sozio and Yavari 2020), whence the vanishing of the
Weitzenböck derivative of the material metric G. The torsion T of the Weitzenböck
connection has the expression T = eν ⊗ dϑν . The tensorial version of the dislocation
density is defined as α = eν ⊗αν = ��T , where the raised Hodge operator acts on the
lower indices. Note that, denoting the extension of the divergence operator to double
contravariant tensors with Div, one has

Divα = Div(eν ⊗ αν) = ∇αν eν,

which in general does not vanish (Sozio and Yavari 2021).

Remark 2.2 Two different lattice coframes {ϑν} and {ϑ̃ν} can be such that dϑν =
dϑ̃ν for all ν. As a matter of fact, dϑ̃ν = dϑν if and only if ϑ̃ν = ϑν + κν , with
dκν = 0. In other words, a distribution of defects corresponds to a plastic deformation
modulo compatible deformations.Wewill see that this has implications in the evolution
equations for the internal variables.

Remark 2.3 Two different lattice coframes {ϑν} and {ϑ̃ν} with different incompatibil-
ity content, i.e., dϑν �= dϑ̃ν and T �= T̃ , can induce the samematerial metric G.When
this happens, they are called metric-equivalent or isometric. It is straightforward to
show that isometric coframes are related as ϑ̃ν = Q

ν
μϑμ, where Qν

μ is an orthogo-
nal matrix. Equivalently, the operators FP and F̃P defining the two isometric coframes
{ϑν} and {ϑ̃ν} are related as F̃P = FP Q, where Q is a G-orthogonal operator with
the following representation:

Q = Q
ν
μ eν ⊗ ϑμ = Q

ν
μ ẽν ⊗ ϑ̃μ.

A state of contorted aeolotropy (Noll 1967) is characterized by a lattice coframe {ϑν}
that induces a Euclidean metric G while dϑν �= 0.7 This means that the body is
allowed to locally relax, meaning that there exist local isometric embeddings, i.e.,
maps ϕ such that G = ϕ∗g. Hence, there exist coordinates Y ν = zν ◦ ϕ inducing
a coframe {dY ν} that is isometric to {ϑν}, i.e., such that the material metric can be
written as G = δμν dYμ ⊗ dY ν . Thus, the case of contorted aeolotropy is equivalent
to the defect-free case modulo non-uniform G-rotations.

Remark 2.4 The choice of a Cartesian frame to represent the undistorted lattice struc-
ture might suggest that the unit cell of the crystal must be cubic. This is not the case.
As a matter of fact, the primitive directions of periodicity in a crystallographic lattice
are represented by generic affine coordinates that might differ from the Cartesian ones.
Affine coordinates Z̃

ν
on B can be defined by pulling back affine coordinates on R

3

7 These are also called impotent dislocations (Mura 1989), or zero stress dislocations (Yavari and Goriely
2012b).
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via a reference mapping κ as Z̃
ν = z̃ν ◦κ . The change of coordinates from Z to Z̃ is a

linear map that can be written as d Z̃
ν = A

ν
μdZμ, where dAν

μ = 0. Therefore, for a
given plastic deformation FP, one can define two different distorted lattice structures
associated with ϑν = F�

PdZ
ν and ϑ̃ν = F�

Pd Z̃
μ
that are related as

ϑ̃ν = F�
Pd Z̃

μ = A
ν
μF�

PdZ
μ = A

ν
μϑμ. (2.9)

We want to show that the lattice coframes {ϑν} and {ϑ̃ν} are equivalent. First, we note
that they induce the same material metric, and hence the same material Riemannian
structure on B. This follows immediately from the fact that (2.5) depends only on FP,
which is the same for both lattice structures. Second, the two coframes induce the same
Weitzenböck connection on B. This can be proved by showing that the two torsions
are equal. Since dAν

μ = 0, from (2.9) one has dϑ̃ν = A
ν
μdϑμ, and therefore,

T̃ = ẽμ ⊗ dϑ̃ν = (A−1)ην eη ⊗ A
ν
ρ dϑ

ρ = eν ⊗ dϑν = T .

Thus, the two lattice coframes induce the sameRiemannian structure and are associated
with the same dislocation content. Therefore, as was mentioned earlier in this section,
for our purposes a periodic lattice structure can be fully represented by a Cartesian
frame.

3 Distributed Dislocations

In the previous section, we showed that the dislocation content associated with a field
of plastic deformations FP is represented by the triplet of 2-forms {dϑν}, where {ϑν}
is a triplet of 1-forms associated with the plastic deformation FP and representing the
distorted lattice structure. Next we assume the existence of multiple dislocation fields,
each one represented by a triplet of differential 2-forms {a

ην}, a = 1, 2, . . . , N , and
write the dislocation content dϑν as the sum of these 2-forms, viz.

dϑν =
N∑

a=1

a
ην . (3.1)

It should be emphasized that in our formulation the fundamental objects describing
the dislocations in a solid are the 2-forms {a

ην}. Their kinematics will be discussed in
Sect. 4. It should also be noted that the present theory is not statistical, so there is no
classification of dislocations into geometrically necessary dislocations and statistically
stored dislocations.8 Dislocation fields are simply seen as single-valued smooth fields

8 In works such as (Arsenlis and Parks 1999; Gurtin 2002) the dislocation content of plastic slips (the
analogue of our dϑν or α) is considered to be the fundamental descriptor of the internal state. The densities
of different types of geometrically necessary dislocations are then deduced from the dislocation content on
the basis of some extra assumptions. Statistically stored dislocations are defined as those distributions that
do not contribute to the total dislocation content. To this extent, our approach is closer to that of Acharya
(2001), and Sedláček et al. (2003, 2007).
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whose superposition determines the incompatibility of the lattice structure. In this
regard, Eq. (3.1) represents a link between the internal variables ϑν and

a
ην . Moreover,

Eq. (3.1) implies that the sum of all the dislocation fields must be exact for all ν, i.e.,
for N given

a
ην there must exist a triplet {ϑν} satisfying (3.1). For this to hold, it is

sufficient (although not necessary) to enforce exactness of each single distribution {a
ην}

for a = 1, 2, . . . , N , i.e., require
a
ην = d

a
εν for some triplet of 1-forms {aεν}. In the case

of a simply connected body, one can simply require that each individual distribution
be closed, i.e., d

a
ην = 0 for all a and ν. These simplifications will be considered later

in this section.

3.1 Decomposable Dislocation Fields

In the following, for the sake of simplicity we will be omitting—when possible—the
gothic index on quantities associated with a particular dislocation field. A dislocation
field {ην} is said to be decomposable if it can be written as

ην = Bνω, (3.2)

for some triplet of scalar fields {Bν} and a 2-form ω that we call dislocation form. The
Bν’s define a vector field B = Bνeν , thatwe callBurgers director.9 The integral curves
of the vector field ��ω are called dislocation curves, and are uniquely determined by
ω.10 The scalar field � = ‖��ω‖G is called the scalar dislocation density, and defines a
unit vector L as ��ω = � L, which is called the dislocation line director. From (A.7),
one also has ω = � ιLμ, where μ is the volume form introduced in Sect. 2.1. The
Burgers and the dislocation line directors span a two-dimensional distribution defined
by the 1-form ιBω, see Appendix B, that can coincide with a glide plane, see Sects. 3.3
and 4.4. A dislocation field has a screw character when ιBω = 0, and it has an edge
character when 〈〈B, L〉〉G = 0, which is a metric-dependent condition. It should be
emphasized that an expression of the type (3.2) is not unique. A possible choice for
a decomposition consists of using the material metric G induced by the lattice frame
as in (2.4) and takes G-normalized variants of both the Burgers vector density and
dislocation form. In this way, it is possible to write (3.2) as

ην = Bνω, such that δμν BμBν = 1 or ‖B‖G = 1. (3.3)

Next we consider N decomposable dislocation fields and refer all the previous quan-
tities to the respective Greek index. By doing so, one can write (3.1) as

9 For a = 1, 2, .., N , the
a
B’s are fields onB and should not be confused with the classical Burgers “vector”

associated with a curve (2.6), see Footnote 6. Moreover, while Bν(γ ) refers to the total dislocation content

dϑν , the
a
B’s are associated with the a-th dislocation field

a
ην .

10 Albeit the raisedHodge operator �� can be definedwith respect to differentmetric tensors, the dislocation
curves are metric-independent. As a matter of fact, it can be shown that the vector fields obtained from the
dislocation 2-form via �� differ only by a scalar factor, and hence they define the same integral curves. In
general, a field of (n−1)-forms on an n-manifold defines a partition of the manifold into a family of curves
and the set of points where the form vanishes. For the definitions of the raised Hodge and interior product
see Appendix A.
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dϑν =
N∑

a=1

a

Bν a
ω. (3.4)

Since
a

B = a

Bνeν and �� a
ω = a

�
a

L for all a, one can also obtain the other incompatibility
descriptors T = eν ⊗ dϑν , αν = ��dϑν , and α = eν ⊗ αν , viz.

T =
N∑

a=1

a

B ⊗ a
ω, αν =

N∑

a=1

a
�

a

Bν ⊗ a

L, α =
N∑

a=1

a
�

a

B ⊗ a

L. (3.5)

We say that a decomposable dislocation field is distinct when there exists a decom-
position ην = Bνω such that dBν ∧ ω = 0. Since dBν ∧ ω = � 〈dBν, L〉μ by virtue
of (A.6), this is equivalent to 〈dBν, L〉 = 0. This means that in the case of distinct
dislocation fields the scalar fields Bν are constant along the dislocation curves. Note
that if such a decomposition exists, then one can find infinitely many others simply
by rescaling it with a non-vanishing scalar factor that is constant along the dislocation
curves. Therefore, one can always decompose a distinct dislocation field into Bνω

such that i) each Bν has unit G-norm as in (3.3), and ii) each Bν is constant along
the dislocation lines. Let us also note in passing that since the Weitzenböck derivative
acts like an ordinary derivate on the components in the lattice frame, if the Bν’s are
constant along dislocation curves, then the Weitzenböck derivative of B along L van-
ishes, i.e., ∇(W)

L B = 0. Finally, a decomposable dislocation field is uniform if there
exists a decomposition Bνω such that the scalars Bν are uniform on B, i.e., such that
dBν = 0. In other words, the Burgers director field associated with uniform dislo-
cations has the same lattice direction at every point. This is a common assumption
in dislocation dynamics (Cermelli and Gurtin 2001; Gurtin 2002; Xia and El-Azab
2015a). In short, the following classes of dislocation fields have been defined:

Uniform ⊂ Distinct ⊂ Decomposable ⊂ Triplets of 2-forms.

Remark 3.1 In the case of a single uniform dislocation field (N = 1, dBν = 0), we
assume that for a given closed curve γ = ∂� one can choose a surface �̃ such that
i) the Burgers vectors (2.8) associated with γ = ∂� and γ̃ = ∂�̃ are the same, i.e.,
Bν(γ̃ ) = Bν(γ ) (meaning that �̃ crosses the same dislocation curves as � does), and
ii) �̃ is everywhere G-orthogonal to the dislocation lines. This means that L is the unit
normal vector on �̃, and hence the area form ς on �̃ satisfies � ς = � j∗ιLμ = j∗ω,
where j : �̃ ↪→ B is the inclusion map, see Appendix A. Then, one can write the
Burgers vector associated with γ as

Bν(γ ) =
∫

�̃

Bν j∗ω = Bν

∫

�̃

� ς .

This shows that � represents a Burgers vector density per G-unit area. Unfortunately,
given a family of dislocation curves, such a surface �̃ does not necessarily exist. The
reason for this is that the 1-form �ω, describing the orientation of the distribution of
planes that are normal to the dislocation curves, is not necessarily Frobenius integrable,
see Appendix B.
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3.2 Closed and Exact Dislocation Fields

Next we consider the case in which a decomposable dislocation field {ην} is closed,
i.e., dην = 0 for all ν. Let us note in passing that a 2-form is closed if and only if
its corresponding vector obtained through the raised Hodge operator is solenoidal,
see Appendix A. In the following lemma, the existence of a convenient decomposition
for closed decomposable dislocation distributions is discussed. Recall that distinct
dislocation fields were defined as those for which the Burgers director is constant
along the dislocation curves.

Lemma 3.2 If a decomposable dislocation field {ην} is closed, then it is distinct. More-
over, there exists a decomposition ην = Bνω such that the 2-form ω is closed and
the scalars Bν are constant along the dislocation curves. In particular, the disloca-
tion field admits a decomposition ην = Bνω with ω closed and Bν of unit norm and
constant along the dislocation curves.

Proof By assumption {ην} is decomposable, i.e., ην = B̃
ν
ω̃ for some B̃

ν
and ω̃. We

look for a scalar f inducing the decomposition Bνω, with Bν = B̃
ν
/ f , ω = f ω̃, and

such that dω = 0. One such scalar is f = B̃
1
, so that ω = B̃

1
ω̃ = B̃1η1/B̃

1 = η1,
which is closed by hypothesis. As for the Burgers director, from (A.3) one obtains

dBν ∧ ω = d(Bνω) − Bνdω = 0,

as both ην andω are closed. Since (dBν ∧ω)μ = 〈dBν, L〉, one obtains 〈dBν, L〉 = 0,
and hence, the scalar fields {Bν} are constant along the dislocation curves. To obtain a
Burgers director with unit G-norm, it is sufficient to observe that one can replace the
decomposition Bνω with (Bν/g)(g ω) for any nowhere vanishing scalar field g that is
constant along each dislocation curve, and obtain the same properties derived so far.
Therefore, by setting g = ‖B‖G , which is constant along the dislocation curves, one
completes the proof. ��

Recall that the exactness of the total incompatibility can be enforced by requiring
that all dislocation fields in (3.1) be exact. If {ην} is a triplet of exact forms, then
ην = dεν for some triplet of 1-forms {εν}. The following lemma is the analogue of
Lemma 3.2 for exact decomposable distributions.

Lemma 3.3 If a decomposable distribution {ην} is exact, then there exists a decompo-
sition ην = Bνdε, for some 1-form ε, with Bν constant along the dislocation curves.

Proof By assumption {ην} is decomposable, i.e., ην = B̃νω̃ for some B̃ν and ω̃,
and exact, i.e., η ν = d̃ε ν for some 1-forms ε̃ ν . We look for a scalar f inducing the
decomposition Bνω, with Bν = B̃ν/ f , ω = f ω̃, and such that there exists a 1-form ε

for which ω = dε. Choosing f = B̃1, one has ω = η1, which is exact by hypothesis.
Therefore, one obtains ε = ε̃ 1, and the proof is complete. The Burgers director is
constant along the dislocation curves by Lemma 3.2 as exactness implies closedness.

��
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By virtue of Lemmas 3.2 and 3.3, in the remaining of the paper we will assume
decompositions with unit norm as in (3.3). Unfortunately, in the case of exact dislo-
cation fields it is not possible to write a decomposition of the type Bνdε with unit Bν

without further assumptions on ε.11 Lastly, in the case of uniform dislocation fields
all these issues become trivial, as the uniform scalars Bν do not alter the derivatives.
It should also be noticed that if the body does not contain any cavities, then closed
2-forms are exact as well. The following is an example of a thick hollow sphere with
a closed dislocation field that is not exact.

Example 3.4 (A non-exact closed dislocation field) Let B be a thick hollow sphere
that in spherical coordinates (R,�,�) is the set B = {(R,�,�)| Ri ≤ R ≤ Ro}
for 0 < Ri < Ro. Let us consider the decomposable distribution ην = Bνω, with
Bν constant scalar fields, and ω = sin� d� ∧ d�, which is well defined in B. The
dislocation curves for this distribution are straight radial lines. It is straightforward
to show that ω, and hence ην , is closed but not exact, i.e., there does not exist any
triplet {ϑν} such that dϑν = ην . This shows that radial dislocation lines with uniform
Burgers director are not realizable by any plastic deformation field.

3.3 Slip Planes and Layered Dislocation Fields

A crystallographic plane is defined up to nonzero factors by three scalars {πν}. These
scalars can be seen as the lattice components of a 1-form π = πνϑ

ν and provide a
representation of a distribution � of planes in the dislocated structure on B, defined
as

� =
⋃

X∈B

{
V X ∈ TXB

∣∣∣ 〈π X , V X 〉 = 0
}
,

see also Appendix B. It should be noted that all 1-forms differing by a nonzero factor
provide an equivalent representation of the same distribution. For example, the Miller
index of a crystallographic plane is obtained by choosing the three smallest integers.
Instead, we assume that the triplet {πν} has unit norm with respect to the metric δμν ,
i.e., that the 1-form π has unit G-norm. By doing so, a distribution is defined by a
unique differential 1-form up to a sign. In a single crystal, the scalars πν associated
with a lattice plane do not change from point to point, whence dπν = 0. This is
true regardless of the plastic deformation. This property can also be expressed by the
vanishing of the lattice Weitzenböck derivative of π , see Sect. 2.2. However, it should
be noted that in the presence of dislocations the exterior derivative dπ = πν dϑν does
not vanish, in general, as dϑν �= 0. Moreover, since π has unit G-norm everywhere,
the covariant derivative ∇π is a 2-form representing how fast the plane �X rotates

11 Starting from a decomposition Bνdε as in Lemma 3.3, in order to obtain unit Bν one would need
d‖B‖ ∧ ε = 0, which in general does not hold. Geometrically, this means that the 1-form ε (serving as a
dislocation potential) must define a plane distribution that is tangent to the level surfaces of ‖B‖. On the
other hand, by Lemma 3.2 ‖B‖ is constant along the dislocation curves defined by ω = dε. This means that
in order to have Bνdε = d(Bνε) the dislocation curves need to be tangent to the plane distribution defined
by ε. This can be expressed by the requirement dε ∧ ε = 0, which is the Frobenius integrability condition
for ε. Therefore, one has ην = Bνdε with unit Bν if and only if ε is Frobenius integrable.
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as X changes. (In Remark 3.6, we show that in the integrable case its projection on
� gives the second fundamental form.) In short, one has ∇(W)π = 0, ∇π �= 0, and
dπ �= 0.

Next we look at the special class of dislocation fields that are layered on stacks
of slip planes. This is a common assumption in continuous dislocation dynamics
(Acharya 2001; Sedláček et al. 2003; Xia and El-Azab 2015a), yet it is violated by
those distributions that account for climbed dislocations and prismatic loops. In the
case of layered decomposable dislocation fields, the slip 1-form π can be used to
constrain both the Burgers director and the dislocation line director to lie on the slip
plane, viz.

πνB
ν = 0, π ∧ ω = 0. (3.6)

The conditions (3.6) are equivalent to 〈π , B〉 = 0, and 〈π , L〉 = 0; they can also be
written as πμημ = 0, and π ∧ ην = 0 for all ν. A dislocation field satisfying (3.6)
is said layered (or strongly layered, in order to distinguish it from weakly layered
dislocation fields defined in Sect. 4.4). A summary of all the internal variables and
their classification is shown in Table 1. Note also that when (3.6) are satisfied, one
has ιBω = f π for some scalar f , with f = 0 when the dislocation field has a screw
character or when it vanishes. Denoting with N the unit vector in � normal to the
dislocation curves (and such that the G-orthonormal frame {L, N,π�} induces the
same orientation as μ), one has

ιNω = � π . (3.7)

As we have just seen, the slip 1-form π depends on the distorted lattice structure. So
one may ask how the presence of plastic slip affects the geometry of the distribution
�. In this regard, El-Azab (2000) and El-Azab et al. (2007) suggested that the glide
planes can deform into 3D surfaces by the effect of finite plastic deformations. But
what happens when the plastic deformation is not compatible? Can one still define slip
surfaces? Trzęsowski (1997) addressed this question in the case of a single dislocation
field, which as we will see is a trivial case. In our analysis, we make no assumption
on the number of smooth dislocation fields.

The integrability condition for a plane distribution � defined by the 1-form π is
given by dπ ∧ π = 0 as a consequence of the Frobenius theorem, see Appendix B.
Therefore, since π = πνϑ

ν , one obtains the following condition:

d
(
πμ ϑμ

) ∧ πν ϑν = πν dπμ ∧ ϑμ ∧ ϑν + πμ πν dϑ
μ ∧ ϑν = 0.

Under the assumption of a single crystal, i.e., dπν = 0, one obtains the integrability
condition of the plane distribution � in terms of the lattice forms, viz.

πμ πν dϑ
μ ∧ ϑν = 0. (3.8)

In the case of no net defect content, i.e., when dϑμ = 0, the condition (3.8) is auto-
matically satisfied, and the existence of slip surfaces is guaranteed (see Fig. 3). This
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Table 1 Summary of the internal variables and their characterization

Plastic deformation: FP

Lattice frame and coframe: eν = F−1
P

∂
∂Zν and ϑν = F�

P dZ
ν

Total dislocation content: dϑν , T = eν ⊗ dϑν , αν = ��dϑν , α = eν ⊗ αν , [eμ, eν ]

Dislocation fields:
1
ην ,

2
ην , . . . ,

N
ην (N triplets of 2-forms)

Decomposable: ην = Bνω�⇒ a
B = a

Bν eν and a
�

a
L = �� a

ω

Distinct: ∃ {bν } such that dbν ∧ ω = 0

Uniform: ∃ {bν } such that dbν = 0

Closed: dην = 0 Decomposable & Closed�⇒ Distinct

�⇒ ην = Bνω with ‖B‖G = 1 and dω = 0

Exact: ην = dεν �⇒ Closed

Decomposable & Exact �⇒ dην = Bνω with ω=dε

Layered: πν Bν = 0, π ∧ ω = 0 with � = ⋃
X∈B

{
Y X ∈ TXB | 〈π X ,Y X 〉 = 0

}

The lattice structure and the dislocation fields are related as: dϑν = ∑N
a=1

a
ην

Decomposable dislocation fields case:

dϑν =∑N
a=1

a
Bν a

ων , T =∑N
a=1

a
B ⊗ a

ω, αν =∑N
a=1

a
�

a
Bν ⊗ a

L, α=∑N
a=1

a
�

a
B⊗ a

L

means that a compatible plastic slip deforms the lattice planes without dismantling
them. Note that from (A.6) one obtains dϑμ ∧ ϑν = 〈ϑν,αμ〉μ = αμνμ, where
αμ and α denote the two variants of the dislocation density tensor defined in Sect. 2.
Hence, Eq. (3.8) can be written as πμ πν αμν = 〈π ⊗ π ,α〉 = 0. Next we introduce
the integrability object I� associated with the plane distribution � as the scalar field
I� defined by dπ ∧ π = I� μ. This allows one to write the Frobenius integrability
condition simply as I� = 0. Note that from (A.5) one also has I� = �(dπ ∧ π), and
fromwhatwe just showed,I� = 〈π⊗π ,α〉. Therefore, invoking the expression (3.5)3
for the dislocation density tensor α, one can write the following identities:

I� = �(dπ ∧ π) = 〈π ⊗ π ,α〉 =
N∑

a=1

a
� 〈π ,

a

B〉〈π ,
a

L〉. (3.9)

It should be noticed that I� is invariant under changes of sign—and hence of
orientation—of π . The following result relates the integrability of a plane distribution
with the dislocation fields that generate the incompatibility of the lattice structure.

Lemma 3.5 The integrability of a plane distribution is controlled by only those dis-
location fields whose Burgers director does not belong to the plane distribution. In
particular, layered dislocation fields do not affect the integrability of the plane distri-
bution on which they lie.
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Fig. 3 Frobenius integrability of crystallographic plane distributions. Left: A plane distribution� is defined
by a 1-form π = πνϑν . In the integrable case, the lattice surfaces can be thought as level sets of the scalar
function h, i.e., h(X) = const, with dh = f π for some scalar field f �= 0. Right: Integrable (top) plane
distribution of the type π = K Z1 dZ1 + dZ3, and non-integrable (bottom) plane distribution of the type
π = K Z2 dZ1 + dZ3.

Proof This result is an immediate consequence of (3.9), from which the integrability
condition (3.8) can be expanded to read

N∑

a=1

a
� 〈π ,

a

B〉〈π ,
a

L〉 = 0,

where the terms for which 〈π ,
a

B〉 = 0 do not contribute to the sum. In particular, by
virtue of (3.6)1, only the dislocation fields that do not lie on � contribute to the sum.

��
As a consequence of Lemma 3.5, in the case of a single layered dislocation field,

the integrability of its slip plane distribution is automatically guaranteed. This agrees
with a result obtained by Trzęsowski (1997), who studied single dislocation fields,
and showed that distributions of slip planes are always integrable.

Remark 3.6 One can look at the Frobenius integrability of plane distributions in the
light of the geometry of surfaces. First we assume the existence of a crystallographic
surface, endowed with the geometry inherited from G. For this surface the 1-form
π is the unit normal 1-form, and hence, we define the second fundamental form as
II(V ,W) = −〈∇Vπ ,W〉, for all tangent vectors V ,W . As was mentioned earlier,
the single crystal assumption dπν = 0 implies that the Weitzenböck derivative of
π vanishes, and so one can express the second fundamental form in terms of the
contorsion tensor K as12

II(V ,W) = 〈π , K (V ,W)〉.

Note that the second fundamental form of a surface is symmetric by construction.
Therefore, as the anti-symmetric part of the contorsion tensor is the torsion tensor T

12 The contorsion tensor K is defined as the difference between the Weitzenböck connection and the
Levi-Civita connection associated with G (Yavari and Goriely 2012b; Sozio and Yavari 2020).
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Fig. 4 Dislocations on a non-integrable plane distribution. Left: Non-integrable plane distribution � of the
typeπ = f (Z2) dZ1+dZ3 as in Example 3.7. Right: The dislocation formω = dZ2∧dZ3− f (Z2) dZ1∧
dZ2 layered on�. Although there exists no family of surfaces (foliation) that are tangent to�, one can still
define dislocation fields that are layered on �. This comes from the fact that one-dimensional distributions
are always integrable

defined in Sect. 2.2, the symmetry requirement is equivalent to

〈π , T (V ,W)〉 = 0. (3.10)

Note that T D
BC V BWC = αDA μABC V BWC , whereas for tangent vectors one

has μABC V BWC = f πA, for some scalar f . Therefore, (3.10) is equivalent to
πD πA αDA = 0, and hence, we have recovered the necessity of (3.8) in the form
I� = 0.

Example 3.7 (Dislocations on a non-integrable plane distribution) Setting Carte-
sian coordinates (Zν) on B, we consider a plane distribution � defined by π =
f (Z2) dZ1 + dZ3, that we assume is of unit norm with respect to an unspecified
material metric G. Then, the integrability object reads

dπ ∧ π = − f ′(Z2) dZ1 ∧ dZ2 ∧ dZ3.

Thus, for non-constant functions f there exists no foliation of B into slip surfaces
tangent to �, see Fig. 3. Nonetheless, it is still possible to define a (decomposable)
dislocation field layered on �, for example, by taking the dislocation form

ω = dZ2 ∧ dZ3 − f (Z2) dZ1 ∧ dZ2,

associated with a line director of components (1, 0,− f (Z2)). To see if the dislocation
curves locally lie on the slip plane distribution, one simply checks (3.6)2, i.e.,ω∧π =
0. Moreover, it should be noted that ω is closed as d f ∧ dZ1 ∧ dZ2 = 0. Therefore,
although a non-integrable plane distribution does not admit the existence of surfaces
that are tangent to it, it is still possible to define dislocation fields that are layered on
it (see Fig.4). In other words, the non-integrability of a plane distribution does not
affect the possibility of stacking dislocations on it. In Sect. 4, we will see that what is
affected by non-integrability is the glide motion of dislocations.
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Fig. 5 The slip coupling 1-forms
ab
� and

ba
� operate as a triple product with

a
L and

b
L multiplied by 〈aπ ,

b
B〉

and 〈bπ ,
a
B〉, respectively. Left: Both 〈aπ ,

b
B〉 and 〈bπ ,

a
B〉—and hence

ab
� and

ba
�—are nonzero. Right:

ab
�

is nonzero, but the Burgers director
a
B lies on

b
�, and hence,

ba
� vanishes. Note that in both cases the slip

coupling forms
ab
� and

ba
� define the plane spanned by

a
L and

b
L (hence they are represented as arrows normal

to it)

Lastly, for every pair of dislocation fields a and b, we define a 1-form
ab
� as

〈 ab
� , V 〉μ = 〈 a

π ,
b

B〉 a
ω ∧ ιV

b
ω = a

πν
a
ω ∧ ιV

b
ην, (3.11)

for any vector X . The 1-form
ab
� defines the plane that is locally spanned by the

dislocation line directors
a

L and
b

L. Hence, one has
ab
� = f

ba
� for some scalar f ,

and
aa
� = 0. Note that one also has 〈 ab

� , V 〉 = a
�

b
� 〈 a

π ,
b

B〉μ(V ,
a

L,
b

L), showing that
ab
� represents some kind of a triple product with

a

L and
b

L. The 1-form
ab
� contains

information about the component of the b-th Burgers director normal to the a-th plane
and is proportional to both scalar dislocation densities. In particular, it is maximum
when the b-th Burgers director is normal to the a-th plane (see Fig. 5). It should
be noticed from Lemma 3.5 that it is the normal component of the Burgers director
with respect to a plane distribution that has an effect on the integrability of the plane
distribution. Hence,

ab
� carries information on the influence of the b-th dislocation field

on the integrability of the a-th plane distribution. In Sect. 4,
ab
� will be used to express

a condition for dislocation glide, while in Sect. 5 we will show that
ab
� is involved in

coupling mechanisms between slip systems. For this reason, we call
ab
� slip coupling

1-form from a to b.

4 Kinematics

In the previous sections, we introduced the lattice 1-forms and the dislocation field
2-forms as the internal variables of our geometric model. These are time-dependent
objects, i.e., material fields ϑν(X , t) and

a
ην(X , t) depending on an extra independent

variable t ∈ R. This section is devoted to the kinematics of the internal variables,
which is derived in terms of some evolution equations (Hochrainer et al. 2007). These
equations do not involve the external variables, meaning that the evolutions of both
the lattice structure and the dislocation fields do not explicitly depend on the spatial
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configuration and deformations. Later on in the paper we will see that the internal and
external variables are coupled via the kinetic equations (Rice 1971; Lubliner 1973). In
particular, each dislocation field will be assumed to be convected by amaterial motion,
representing the movement of the dislocations in the crystal. Under this assumption,
the evolution of dislocations is formulated in a geometric setting using the notion of
flow that we review in Appendix C. The evolution of the moving frame is then derived
in terms of the dislocation variables, and Orowan’s equation is introduced (Orowan
1940). We also look at the case in which dislocations are forced to glide on the plane
distribution that they are layered on and study how the lack of integrability of a plane
distribution affects the glide motion. First we review some measures of the rate of
deformation in dislocation plasticity.

4.1 Rates of Deformation

We denote the partial time derivative with ∂t . In classical multiplicative plasticity, the
rate of change of plastic deformation is defined as the following tensors of type (1, 1):

LP = F−1
P ∂t FP, lP = ∂t FP F−1

P , (4.1)

where LP is referred to the undeformed configuration, while lP is referred to the “inter-
mediate configuration.”13 The tensor LP defined in (4.1) can be used to describe the
rate of change of the lattice structure via (2.1) and (2.2), viz.

∂tϑ
ν = (∂t F�

P )dZ
ν = (∂t F�

P )F
−�
P ϑν = (F−1

P ∂t FP)
� ϑν = L�

Pϑ
ν, (4.2)

and

∂t eν = (∂t F−1
P ) ∂

∂Zν = (∂t F−1
P )FPeν = −F−1

P (∂t FP)eν = −LPeν . (4.3)

This implies that LP = eν ⊗ ∂tϑ
ν = −∂t eν ⊗ ϑν . An equivalent description consists

of using the change of frame approach of Eq. (2.3), and letting Lν
μ = ∂tF

ν
η (F−1)ημ,

so that one obtains

∂tϑ
ν = L

ν
μ ϑμ, ∂t eν = −L

μ
ν eμ. (4.4)

In this way, LP and L
μ

ν are related as

LP = L
μ

ν eμ ⊗ ϑν. (4.5)

The rate of change of all the quantities derived from the lattice structure can then be
expressed using either (4.2) or (4.4). For the time derivative of thematerialmetric (2.4),

13 For further discussions on the intermediate configurations, see Soare (2014), and Goodbrake et al.
(2021), and Yavari and Sozio (2023).
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one can simply write ∂tG = L�
PG + GLP. The rate of change of the material volume

υ is defined as ∂tμ = υμ and can be written as

υ = 1

2
〈∂tG, G�〉 = 〈∂tϑν, eν〉 = trLP. (4.6)

As the mass formm = ρμ is assumed constant in time by virtue of mass conservation,
one obtains the rate of change of the mass density as ∂tρ = −υρ.

The rate of change of plastic deformation can be used to express the evolution of
the incompatibility of the lattice structure. From (4.4), since d and ∂t commute, one
obtains

d
(
∂tϑ

ν
) = dLν

μ ∧ ϑμ + L
ν
μdϑ

μ, (4.7)

that can be used to calculate the rate of change of the torsion tensor T = eν ⊗
dϑν associated with the Weitzenböck connection ∇(W). Invoking (4.4) and (4.5), and
using the fact that the Weitzenböck derivative of a tensor is equivalent to the ordinary
derivative of the components of the tensor with respect to the lattice frame (Sozio and
Yavari 2020), from (4.7) one obtains14

∂tT = ∂t eν ⊗ dϑν + eν ⊗ ∂tdϑ
ν

= −L
μ

νeμ ⊗ dϑν + eν ⊗ (
dLν

μ ∧ ϑμ
)+ eν ⊗ (

L
ν
μdϑ

μ
)

= eν ⊗ (
dLν

μ ∧ ϑμ
)

= ∇(W)
eμ LP ∧ ϑμ

= alt(∇(W)LP),

where the operator alt acts on the lower indices.15 Similarly, the rate of change of
αν = ��dϑν is written as ∂tα

ν = υαν + ��d(∂tϑν), where the rate of change of
the material volume form shows up because of the raised Hodge operator. As for
α = eν ⊗ αν , denoting with μ� the multivector obtained by raising the indices of the
volume form, i.e., μ� = e1 ∧ e2 ∧ e3, one has16

∂tα = υα + μ� : ∇(W)LP,

with components (∂tα)AB = υαAB + μAHK ∇(W)
H L

B
K . Next we consider the con-

figuration mapping and the deformations associated with it. A spatial motion is a
one-parameter family of embeddings ϕ : B×R → S, and the deformation gradient is
a time-dependent two-point tensor F(X , t) = TXϕt . The velocity vector V is defined
as the velocity of the orbits of ϕX : t �→ ϕt (X) for fixed X , while, for every t , one can
define the vector field v(x, t) = V (ϕ−1

t (x), t) on ϕt (B) as the instantaneous velocity

14 See also Cleja-Ţigoiu (2007) for the time-derivative of the Weitzenböck connection.
15 The operator alt maps a tensor A of order (0, k) to the k-form with components (alt A)J1 J2...,Jk =
1
k!
∑

σ sign(σ )Aσ(J1 J2...Jk ), where σ denotes a permutation of the indices J1, J2, . . . , Jk .
16 Cf. Berdichevsky (2006).
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Fig. 6 A sketch of the convection of a distribution of dislocations in the material manifold. Left: A family
of dislocation curves. Center: The material motion velocity field convects the dislocation curves. Right:
The new shape and position of the family of dislocation curves after some time

field. The velocity field can be used to write the rate of change of the pulled-back
metric as ∂tC� = ∂t (ϕ

∗g) = ϕ∗Lv g (Marsden and Hughes 1983). It should be noted
that while the expressions ∂t FP and ∂tC� are well defined, ∂t F and ∂t FE are not. The
reason for this is that F and FE are two-point tensors, and hence, their base point in
the ambient space S moves along the trajectory of the motion when t changes. In order
to define the time derivative of the two-point tensors FE and F, one needs to identify
tangent spaces at different points of S, e.g., via a connection in S.17 With this in mind,
one can define

LE = F−1
E ∂t FE, lE = ∂t FE F−1

E , L = F−1 ∂t F, l = ∂t F F−1.

If one chooses the connection ∇(g), then l = ∇(g)v, and L = ϕ∗∇(g)v. Moreover,
one has ∂tC� = 2 symL�, and Lv g = 2 sym l�. The different rates of deformation are
then related as

L = F−1
P LE FP + LP, l = lE + FE lP F−1

E . (4.8)

4.2 Evolution of Dislocation Fields

We assume that a dislocation field {ην} is convected by a smooth material motion
χ : B × R → B.18 This means that we assume the following evolution equation:

ην
t = χt∗ ην

0 , (4.9)

for all the 2-forms ην in the triplet. Equation (4.9) can also be written using relative
motions as ην

t = (χ s
t )∗ ην

s , see Appendix C. Note that ην is completely determined
at any time by the material motion χ and the initial condition ην

0. We denote with
U the time-dependent velocity field associated with χ , see Fig. 6. From (4.9), the
non-autonomous Lie derivative LUην vanishes, and hence, from (C.1) one obtains an

17 See Yavari et al. (2016) and references therein for discussions on covariant time derivatives.
18 We call it material motion as it occurs at the level of the material body and represents the evolution of
internal variables associated with defects, independently of the spatial motion. However, no migration or
diffusion of material within the solid is considered in this model.
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evolution equation in the rate form as

∂tη
ν = −LUην . (4.10)

The motion of a dislocation field as observed in the ambient space is given, for a fixed
X ∈ B, by themap t �→ ϕ(χ(X , t), t). Therefore, the velocity with which dislocations
travel in the deformed lattice defined on ϕ(B) is written as FU + v.

If the dislocation field is decomposable, one can obtain time-dependent decompo-
sitions Bνω such that both the Burgers director and the dislocation density 2-form are
convected by the same material motion χ . This can be easily achieved by convecting
the decomposition at the initial time, viz.

Bν
t = Bν

0 ◦ χ−1
t , ωt = χt∗ω0, (4.11)

and in rate form

∂t B
ν = −〈dBν,U〉, ∂tω = −LUω. (4.12)

It should be noted that in the normalized decomposition (3.3) the scalars Bν are con-
vected, meaning that (4.12)1 does not alter the property ‖B‖G = 1. However, the
director B = Bνeν is not convected, as the lattice forms ϑν follow a different evolu-
tion equation, see Sect. 4.3. For the same reason, the material metric G and the scalar
dislocation density � are not convected either. Moreover, a dislocation field that is
initially closed remains closed at all times during convection, as the exterior deriva-
tive and pushforward commute, or equivalently, exterior derivative and Lie derivative
commute, see Sect. 4.3. For the same reason, by convecting the decomposition of
Lemma 3.2 one obtains a decomposition that satisfies the same properties at all times.
The following lemma clarifies the geometric meaning of convected decompositions.

Lemma 4.1 The dislocation curves associated with a convected ω are convected by
the same map.

Proof We fix two times, 0 and t , and denote with �
�
t the raised Hodge operator induced

by Gt , and with �
�
0 the one induced by G0. Then, the vector �

�
t ωt is tangent to

the dislocation curves for ωt , while the vector χt∗��
0 ω0 is tangent to the convected

dislocation curves. In order to prove the lemma, one needs to show that the two vectors
are parallel, i.e., (χt∗ ◦ �

�
0)ω0 = f ��

tωt for some scalar f �= 0. One can write

(χt∗ ◦ �
�
0)ω0 = (χt∗ ◦ �

�
0 ◦ χt

∗)ωt .

Note thatχt∗◦�
�
0◦χt

∗ is the raisedHodge operator induced byχt∗G0. As in dimension
three all 3-forms differ by a nonzeromultiplicative factor, say K , one finds that f = K .

��
Since Bν and the dislocation curves are convected by the same map χ , distinct

dislocation fields remain distinct, see Sect. 3.1. In the case of uniform dislocation
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distributions, one has dBν = 0, and hence, from (4.12) the rate of change of theBurgers
director vanishes. This means that uniform dislocation distributions stay uniform and
the Burgers vector density is constant in time. The contribution of the dislocation
field ην to the Burgers vector associated with the boundary of a convected surface
�t = χt (�0) is conserved. As a matter of fact, recalling (2.7), one can write

∫

�t

j∗ην
t =

∫

χt (�0)

j∗
(
χt∗ην

0

) =
∫

χt (�0)

χt∗
(
j∗ην

0

) =
∫

�0

j∗ην
0,

as j∗ ◦ χt∗ = χt∗ ◦ j∗ when the surface is convected.19 Hence, the integral is time
independent.

Remark 4.2 Similar to the spatial motion ϕ, a material motion for a dislocation field
has been defined as a family of diffeomorphisms χ : B × R → B. By doing so,
the dislocation velocity U associated with χ must be tangent to the boundary ∂B, as
diffeomorphismsmap the boundary of amanifold to itself. Thismeans that dislocations
can neither emerge on the boundary of the crystal nor enter from the outside. This is
a restrictive assumption, as grain boundaries play a crucial role in plasticity acting as
sources, absorbers and barriers for dislocations. In order to allow a non-tangent U on
the boundary, we consider the following construction: For each point X in the interior
B̊ and for each time t , we take a sufficiently small time interval [t−τ(X , t), t+τ(X , t)]
such that the integral curve ofU(X , t) that passes through X at time t does not intersect
the boundary ∂B. Next, one defines the subbodyPt,u = {X ∈ B̊|u ≤ τ(X , t)}, i.e., the
set of points having a well-defined trajectory during the interval [t − u, t + u]. Then,
the motion χ t

s : Pt → B for s ∈ [t − u, t + u] is well defined.20 In other words, by
relaxing the restriction of tangent U , one can still define a material motion for smaller
time intervals and subbodies. For the sake of simplicity, and with an abuse of notation,
we still will be referring to a material motion as a single well-defined map χ .

Next we assume that each dislocation field {a
ην}moves across the solid with velocity

a

U , associatedwith thematerialmotion a
χ , a = 1, 2, . . . , N . Note that the rate of change

of the dislocation fields is related to the rate of change of the lattice forms via (3.1).
Then, the evolution equation (4.10) applied to each dislocation field allows one to
write

d
(
∂tϑ

ν
) = ∂t

(
dϑν

) = ∂t

N∑

a=1

a
ην =

N∑

a=1

∂t
a
ην = −

N∑

a=1

L a
U

a
ην, (4.13)

as the derivatives d and ∂t commute. After integration, one obtains

∂tϑ
ν = γ ν + βν, with dγ ν = −

N∑

a=1

L a
U

a
ην, (4.14)

19 The maps χt and j commute. More precisely, j�t ◦ χt = χt |�0 ◦ j�0 , as for X0 ∈ �0 one has
( j�t ◦ χt )(X0) = (χt |�0 ◦ j�0 )(X0) = χt (X0).
20 See Appendix C for the notation of flows and material motions.
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for some triplet of closed 1-forms {βν}, and the triplet of 1-forms {γ ν} carrying
the whole incompatible content of the rate of plastic deformation. Equation (4.14)
is an evolution equation for the lattice coframe and is based on the fact that the
dislocation fields contribute to the defect content according to (3.1), and that they
evolve as prescribed by (4.10). It should be noted that the evolution of the lattice
coframe is then determined modulo closed 1-forms, see Remark 2.2. This in turn
means that the mechanics of a solid with moving distributed dislocations cannot be
fully described by (3.1) and (4.10) alone.21 Therefore, in order to fix the indeterminacy
of the integration forms βν in (4.14), a closure model based on the underlying physics
is needed, e.g., Orowan’s equation that is discussed next.

4.3 Orowan’s Equation

Next we consider a closed dislocation field {ην}, for which dην = 0 for all ν, as
in Sect. 3.2. As was mentioned earlier, when a dislocation field is convected according
to (4.9), if it is closed at a particular time, then it is closed at all times. This is due
to the fact that exterior derivative and pushforward commute, and hence dην

t = (d
◦ (χ s

t )∗)ην
s = ((χ s

t )∗ ◦ d)ην
s . Moreover, by virtue of Cartan’s formula (A.4), the

evolution equation (4.10) becomes

∂tη
ν = −d(ιUην), (4.15)

and for a decomposable dislocation field (4.12)2 reads

∂tω = −d(ιUω). (4.16)

Both expressions (4.10) and (4.15) were derived by Hochrainer et al. (2007), although
this was done in the context of a linear theory and for a single dislocation field. The
kinematics of closed dislocation fields has the following property.

Lemma 4.3 The evolution equation of closed distributions of dislocations is defined
up to material motions in the direction of the dislocation curves.

Proof By virtue of (4.10), it is sufficient to show that LŨην = LUην for any Ũ =
U + f L, with f a scalar field. By the linearity of the Lie derivative, one has

LŨην = LUην + L f Lην .

On the other hand, Cartan’s formula (A.4) allows us to write

L f Lην = d(ι f Lην) + ι f L(dην) = d f ∧ ιLην + f d(ιLην) + f ιL(dην),

21 One can split ∂tϑ
ν in a unique way by using the Helmholtz decomposition induced by G, i.e., by

choosing γ ν such that (�d�)γ ν = 0. Although in a non-rate form, Wenzelburger (1998) suggested that
if one uses the Helmholtz decomposition, then γ ν is the part that is associated with plastic deformations,
while dcν represents an elastic deformation. This is incorrect mainly because the elastic deformation is
incompatible as well. Moreover, there is no physical basis for which the Helmholtz decomposition should
provide any information on how to eliminate the indeterminacy of ∂tϑ

ν .
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where use was made of (A.3) and of the linearity of the interior product. Note that
dην = 0 by hypothesis, and ιLην = BνιLω = 0 as L and ��ω are parallel. Therefore,
LŨην = LUην , which proves the lemma. ��

It should be emphasized that Lemma 4.3 holds only under the hypothesis of closed
dislocation fields. The reason for this is the fact that the Burgers director of a non-
closed dislocation field is not necessarily constant along the dislocation curves. This
means that the convection along the dislocation curves of a non-closed dislocation field
changes the dislocation field itself by translating the non-uniform Burgers director
along the dislocation curves.

As was mentioned in Sect. 4.2, the evolution equation leaves an indeterminacy in
the lattice forms, whence the need of a closure model coming from the physics of
the problem. In the case of closed dislocations, this extra information is provided by
Orowan’s equation. Note that, under the assumption of closed dislocation fields, (4.15)
allows one to write (4.13) as

d
(
∂tϑ

ν
) = −

N∑

a=1

d
(
ι a
U

a
ην
)

= −d
N∑

a=1

ι a
U

a
ην, (4.17)

where the linearity of the exterior derivative was used. Hence, after integration one
obtains

∂tϑ
ν = −

N∑

a=1

ι a
U

a
ην + βν,

where {βν} are three arbitrary closed 1-forms as in (4.14). Orowan’s equation is then
obtained by choosing βν = 0, i.e.,

∂tϑ
ν = −

N∑

a=1

ι a
U

a
ην. (4.18)

Note that, similar to ην , the forms ϑν are completely determined at any time by
the material motion χ and the initial condition ϑν

0. From (4.18), it is clear that the
lattice coframe {ϑν}—and hence the material metric G—is not convected. Assuming
decomposable dislocation fields

a
ην = a

Bν a
ω, and recalling

a
ω = a

� ιa
L
μ from Sect. 3.1,

Orowan’s equation (4.18) can be rewritten as

∂tϑ
ν =

N∑

a=1

− a

Bν ι a
U

a
ω =

N∑

a=1

−a
�

a

Bν ι a
U

ιa
L
μ =

N∑

a=1

a
�

a

Bν ιa
L
ι a
U

μ =
N∑

a=1

a
�

a

Bνμ(
a

U,
a

L),
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where μ(
a

U,
a

L) = ιa
L
ι a
U

μ = μABC
a

U A
a

LBdXC . As for the rate of change of volume,
from (4.6) one obtains

υ =
N∑

a=1

a
� μ(

a

U,
a

L,
a

B), (4.19)

where μ(
a

U,
a

L,
a

B) = μABC
a

U A
a

LB
a

BC denotes a triple product in (B, G).

Remark 4.4 Let us now look at the contribution to the rate of change of the lat-
tice coframe {ϑν} of a single decomposable dislocation field {ην} convected by U .
From (4.18) and (4.19), one writes

∂tϑ
ν = −ιUην = � Bνμ(U, L), υ = � μ(U, L, B). (4.20)

It should be noticed that the lattice coframe is not convected even in the case of a
single dislocation field. Equation (4.20)1 is the common form of Orowan’s equation
(Sedláček et al. 2003), from which one concludes that if the material motion velocity
is tangent to the dislocation lines there is no plastic deformation. This is formalized
in Lemma 4.5. Moreover, by the criterion of linear independence, from (4.20)2 one
concludes that the plastic slip is isochoric if and only if B, U and L are coplanar, e.g.,
in the case of glide motion of dislocations, see Sect. 4.4.

Lemma 4.5 In the case of decomposable dislocation fields, Orowan’s equation is
invariant under superimposed material motions in the direction of the dislocation
curves.

Proof It is sufficient to show that ιŨην = ιUην for any Ũ = U + f L, where f is an
arbitrary scalar field. By linearity of the interior product, one can write

ιŨην = BνιŨω = Bν (ιUω + f ιLω) .

Since ιLω = ιL ιLμ = 0, Orowan’s equation (4.20) is unaltered. ��

Example 4.6 We look at the motion of a closed dislocation field and at the change
of lattice structure induced by the effect of Orowan’s equation. We fix Cartesian
coordinates (Zν) on B and consider the following material motion:

χ : (Z1, Z1, Z3) �→ (Z1 +Ut, Z1, Z3), (4.21)

for a constant scalarU , associated with the velocity U = U ∂
∂Z1 . We also consider the

following closed dislocation field:

ην = �BνdZ1 ∧ dZ2, (4.22)
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with constant� and Bν . Equations (4.21) and (4.22) represent a forest of uniformly dis-
tributed straight dislocations moving sidewise.22 It should be noted that such a motion
leaves the dislocation field unchanged. As a matter of fact, the evolution equation
gives

∂tη
ν = −dιUην = −d

(
UBνdZ2

)
= 0,

which agrees with the time independence of ην , while Orowan’s equation (4.20) reads

∂tϑ
ν = −ιUην = −UBνdZ2. (4.23)

It should be noticed how in this case the constant dislocation field ην induces a change
in the lattice forms. However, by assuming a vanishing dislocation velocity, i.e.,U = 0
instead of U = U ∂

∂Z1 , one obtains the same time-independent ην , while Orowan’s
equation leaves the lattice unchanged, i.e., ∂tϑν = 0. In other words, as was discussed
in Sect. 4.2, the evolution of the lattice structure cannot be deduced exclusively from
the evolution of the dislocation fields; instead, it explicitly depends on the material
motion. This shows that Orowan’s equation cannot be deduced from the kinematics
of the dislocation fields, as any triplet of closed 1-forms instead of (4.23) would be
compatiblewith it.Assuming Bν = (−1, 0, 0), one obtains the classic forest of straight
edge dislocations of sign “⊥” moving toward right, so that (4.23) gives ∂tF

1
2 = U�

as the only non-vanishing component of ∂t FP.

4.4 Glide Motion

Let� be a plane distribution represented by a 1-formπ of unit G-norm, as in Sect. 3.3.
A glide motion is defined by a dislocation velocity that locally lies on a plane distri-
bution. In particular, a dislocation motion χ with velocity U is a glide motion along
� if it satisfies

〈π ,U〉 = 0. (4.24)

One may ask if the condition (4.24) is appropriate for an evolving lattice structure,
i.e., whether it fully takes into account the fact that π is evolving during the glide of
dislocations. What suggests the need for a correction is the fact that, in the case of a
particle constrained to move on an evolving surface defined by the normalized 1-form
π , the velocity V of the particle satisfies 〈π , V 〉 = S, with S being the velocity of the
moving surface in the normal direction. Similarly, we can look at our case as a short
dislocation segment gliding on a small portion of a surface that can be approximated
by a planar surface at a sufficiently close distance. However, the quantity S can be
set to zero as the evolution of a plane distribution constitutes a mere change in the

22 In this example, the dislocation curves are straight in the sense of Cartesian coordinate chart repre-
sentation, while a coordinate-free notion of straightness and curvature should rely on a metric, such as
G.
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local orientation of the crystallographic planes and does not contribute directly to the
motion of the dislocations.

In the following, we consider the glide motion of layered dislocation fields, i.e.,
those whose Burgers and dislocation line directors are in �, and hence satisfy (3.6).
Note that since L and U span the slip plane given by π , the 1-forms ιUω and π define
the same plane distribution.23 In particular, we set

ιUω = −γπ . (4.25)

The scalar γ is the rate of plastic slip associated with �. Moreover, since 〈π ,U〉 = 0,
one can write U = 〈〈U, L〉〉G L + 〈〈U, N〉〉G N . Therefore, setting U⊥ = 〈〈U, N〉〉G ,
from (A.7) and (3.7) one obtains

ιUω = ιU ι� Lμ = � 〈〈U, L〉〉G ιL ιLμ + � 〈〈U, N〉〉G ιN ιLμ = �U⊥π , (4.26)

and hence, γ = −�U⊥. Equation (4.26) can also be written as μ(L,U) = ιU ιLμ =
U⊥π . The evolution equation (4.15) can be specialized to closed layered dislocation
fields as

∂tη
ν = d(γ Bνπ).

Hence, the defect content of the overall rate of change of the lattice forms (4.17) reads

d
(
∂tϑ

ν
) =

N∑

a=1

d( a
γ

a

Bν a
π),

where
a
π is the slip 1-form associated with the a-th dislocation field. Assuming that

the closed layered dislocation fields obey Orowan’s equation, (4.18) is simplified to
read

∂tϑ
ν =

N∑

a=1

a
γ

a

Bν a
π , or LP =

N∑

a=1

a
γ

a

B ⊗ a
π . (4.27)

Note that from (4.24) one concludes thatU , L and B are coplanar, and hence,Orowan’s
equation implies that the rate of change of volume vanishes by virtue of (4.19). For
this reason, the glide of dislocations is said to be a conservative motion.24 A summary
of the evolution equations for the internal variables is shown in Table 2.

Remark 4.7 In the absence of changes of phase, one can assume lattice characteristics
that are constant in time, and hence, ∂tπν = 0 for all ν. Then, plane 1-forms evolve
with time according to ∂tπ = πν∂tϑ

ν . However, they are not convected objects, as the

23 This can also be shown by using the relation (A.2) and invoking (3.6)2 and (4.24): π ∧ ιUω =
ιU (π ∧ ω) − 〈π ,U〉 ω = 0.
24 In the dislocation dynamics literature, a conservative motion refers to a dislocation motion inducing a
plastic deformation that is volume preserving (Nabarro 1952).

123



   83 Page 32 of 83 Journal of Nonlinear Science            (2023) 33:83 

Table 2 Summary of the evolution equations for the internal variables

Dislocation fields Defect content Lattice coframe

General: ∂tη
ν = −LUην d

(
∂tϑ

ν
) = −∑N

a=1 La
U

a
ην ∂tϑ

ν = γ ν + dcν

Closed: ∂tη
ν = −dιUην d

(
∂tϑ

ν
) = −d

∑N
a=1 ιa

U

a
ην ∂tϑ

ν = −∑N
a=1 ιa

U

a
ην + κν

Orowan’s equation: κν = 0

∂tϑ
ν = −∑N

a=1 ιa
U

a
ην

Layered: ∂tη
ν = d(γ Bνπ) d

(
∂tϑ

ν
) = ∑N

a=1 d
(
a
γ

a
Bν a

π
)

∂tϑ
ν = ∑N

a=1
a
γ

a
Bν a

π

1-forms ∂tϑ
ν follow Orowan’s equation. Therefore, when they exist, slip surfaces are

not convected by the material dislocation velocity U either. In particular, Eq. (4.27)1
implies that the glide of a dislocation field on its own slip plane does not affect the
evolution of the slip plane itself.

Contrary to intuition, the glide condition is not enough to guarantee that layered
dislocation fields remain layered. As amatter of fact, as was pointed out in Remark 4.7,
the dislocation curves and the plane distributions evolve according to different mech-
anisms. On the other hand, in Sect. 3.3 we showed that a plane distribution is not
necessarily integrable, in the sense that the lattice can be so warped that not only do
the crystallographic planes bow, but they may not even exist. The issue we address
in the following lemma is what happens to the glide motion in the case of a time-
dependent non-integrable plane distribution.

Lemma 4.8 Let � be a plane distribution on B defined by the unit 1-form π . Let ω be
a dislocation 2-form initially layered on �, i.e., such that π ∧ ω = 0 at t = 0. Let us
assume that ω is only allowed to glide on �, i.e., 〈π ,U〉 = 0 at all times t. Then, the
dislocation field remains layered on � at all times t ≥ 0 if and only if

∂tπ ∧ ω = �U⊥ I� μ, (4.28)

where I� is the integrability object associated with � and γ is the rate of plastic slip.

Proof Recalling the definition of the non-autonomous Lie derivative (see Appendix
C), first we notice that LU (π ∧ω) = 0 implies that the 3-form χ t

s
∗(π s ∧ωs) is constant

for all t and s. Therefore, under the assumptionπ∧ω = 0 at time t = 0, LU (π∧ω) = 0
is necessary and sufficient for π ∧ ω = 0 at all times. Next, we calculate LU (π ∧ ω).
From the evolution equation (4.12)2, one has LUω = 0, and hence, one can write

LU (π ∧ ω) = LUπ ∧ ω = ∂tπ ∧ ω + LUπ ∧ ω.

The second term can now be rewritten using Cartan’s formula as

LUπ ∧ ω = (dιUπ + ιUdπ) ∧ ω = ιUdπ ∧ ω,
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Fig. 7 Glide motion of bundles
of dislocations. For each
non-integrable slip dislocation
field, the non-integrability is
compensated by a rotation of the
slip system in the direction of
the dislocation line director

where use was made of the glide condition (4.24), i.e., ιUπ = 〈π ,U〉 = 0. Invoking
(A.2) for the interior product, one can write ιUdπ ∧ ω = −dπ ∧ ιUω, as dπ ∧ ω is a
4-form, and hence, it vanishes in dimension three. Therefore, one is left with

LU (π ∧ ω) = ∂tπ ∧ ω − dπ ∧ ιUω. (4.29)

Recalling (4.25), and the definition of the integrability object I� in (3.9), one can
write

dπ ∧ ιUω = −γ dπ ∧ π = −γ I� μ = �U⊥ I� μ,

where μ is the material volume form. Hence, the proof is complete. ��
In other words, having glide does not guarantee that initially layered dislocation

fields remain layered at all times. Equation (4.28) shows that this is due to two mecha-
nisms: i) the lattice structure changeswith time and hence so does the plane distribution
�; ii) the non-integrability of the slip distribution. It should also be noticed that
Eq. (4.28) can be written as 〈∂tπ , L〉 = −U⊥I�. Therefore, in the case of layered
dislocations on non-integrable plane distributions, in order to accommodate the glide
motion, the slip plane must rotate toward the dislocation line director at a rate that
is proportional to the glide velocity and to the non-integrability content of the slip
distribution, see Fig. 7.

Remark 4.9 In the case of a single dislocationfield followingOrowan’s equation (4.20),
one has ∂tπ = −πνBνιUω = 0 by virtue of (3.6)1, and hence, the slip surfaces are
time independent. If� is non-integrable, from (4.28) one obtains ∂tπ = 0, and hence,
U⊥ = 0. This means that single dislocation fields layered on non-integrable slip
planes cannot glide. In other words, non-integrable slip planes behave as anchors for
distributions of dislocations.

Nextwe consider the entire ensemble of N dislocationfields and their associated slip
systems. We focus on what happens to the a-th glide motion. Notice that

a
π = a

πνϑ
ν ,

with a
πν uniform in space and constant in time. By assuming closed dislocation fields

obeying Orowan’s equation (4.18), one writes the left-hand side of (4.28) as

∂t
a
π ∧ a

ω = −
N∑

b=1

a
πν

b

Bν ι b
U

b
ω ∧ a

ω.
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Thus, recalling the definition (3.11) of the non-Schmid forms, Eq. (4.28) becomes

N∑

b=1

〈 ab
� ,

b

U〉 + a
�

a

U⊥ Ia
π

= 0, a = 1, 2, . . . , N . (4.30)

From (4.29), one should note that the right-hand side of (4.28) can also be written in
the form dπ ∧ ιUω, which invoking (3.1) becomes

d
a
π ∧ ι a

U

a
ω = −

N∑

b=1

a
πν

b

Bν ι b
U

b
ω ∧ a

ω,

and hence, using (3.11) again, one can recast (4.30) as

N∑

b=1

〈 ab
� ,

b

U〉 =
〈 N∑

b=1

ab
� ,

a

U
〉
, a = 1, 2, . . . , N . (4.31)

Example 4.10 (A single dislocation field on a non-integrable slip distribution) We
consider a dislocation field on a non-integrable plane distribution. In Remark 4.9, we
showed that glide on a stationary non-integrable plane distribution is not allowed.
However, according to Lemma 4.8, the glide motion can be unlocked when the ori-
entation of the plane distribution changes in time by the effect of the evolution of
the lattice structure. This can be caused by the glide of other dislocation fields (as in
Example 4.11), or by any other type of anelastic process. As an example, let us take
the following dislocation form:

ω(Z2, t) = a(Z2, t) dZ2 ∧ dZ3 − c(Z2, t) dZ1 ∧ dZ2,

that we assume is convected by the material velocity U = U (Z2, t) ∂
∂Z2 , see Fig. 6.

Note that the conditions ∂t a = − ∂
∂Z2 (aU ) and ∂t c = − ∂

∂Z2 (cU ) must hold in order
to satisfy the evolution equation (4.16). We also take the following 1-form:

π(Z2, t) = c(Z2, t) dZ1 + a(Z2, t) dZ3,

defining a non-integrable plane distribution � as

dπ ∧ π =
(
c

∂a

∂Z2 − a
∂c

∂Z2

)
dZ1 ∧ dZ2 ∧ dZ3.

In particular, referring the integrability object to a Euclidean volume form, one has
I� = c ∂a

∂Z2 −a ∂c
∂Z2 . However, the time dependency of π allows the plane distribution

to accommodate the dislocation glide as both the layer condition (3.6)2 and the glide
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Fig. 8 Glide of a dislocation field on a time-dependent non-integrable plane distribution at four different
times. The dislocations move toward the right side of the sample box. At each point, the orientation of the
glide plane needs to change in time in order to accommodate new dislocations coming with different slopes.
Another effect of the time dependence of the plane distribution, combined with a non-uniform velocity, is
the evolution of the ruled surface generated by the dislocation lines

condition (4.24) are satisfied at all times. In particular, one obtains the rate of change
of π in the direction of the dislocation line director as

∂tπ ∧ ω = (a ∂t c − c ∂t a) dZ1 ∧ dZ2 ∧ dZ3 =
(
c

∂a

∂Z2 − a
∂c

∂Z2

)
U dZ1 ∧ dZ2 ∧ dZ3,

where use was made of the conditions ∂t a = − ∂
∂Z2 (aU ), and ∂t c = − ∂

∂Z2 (cU ).
Hence, we have obtained ∂tπ ∧ ω = U dπ ∧ π , which is consistent with Lemma 4.8
(Fig. 8).

Example 4.11 (Two slip distributions of dislocations) In this example, we consider
the case of two closed dislocation fields on two different glide planes. The condi-
tion (4.31) is written as

〈 12
� ,

2

U〉 = 〈 12
� ,

1

U〉, 〈 21
� ,

1

U〉 = 〈 21
� ,

2

U〉.

Since
12
� = f

21
� for some scalar f , the two equations are dependent. Therefore, one

obtains the following single condition for the gliding motion:

〈 12
� ,

1

U〉 = 〈 12
� ,

2

U〉. (4.32)

As was mentioned earlier, the 1-form
12
� generates the distribution of planes spanned

by
1

L and
2

L, see Fig. 5. Therefore, the out-of-plane components of the two velocities
need to be equal. Unlike a single dislocation field on a non-integrable slip distri-
bution described in Example 4.10, in this case, when the two dislocation velocities
satisfy (4.32), glide is allowed.

Lastly, we look at the glide of dislocation fields that are not strongly layered on
their slip plane distribution. We do this by dropping the layer condition (5.26)2 on the
line director, while keeping the layer condition (5.26)1 on the Burgers director valid.
By allowing π ∧ ω �= 0, Eq. (4.25) is no longer satisfied. In other words, when the
dislocation curves do not locally lie on the slip plane, the 1-forms π and ιUω define
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Fig. 9 Different layer conditions for gliding dislocations. Left: Strongly layered dislocation fields, for which
both B and L—as well as U—belong to �, i.e., 〈π , B〉 = 〈π , L〉 = 〈π ,U〉 = 0. Right: Weakly layered
dislocation fields, satisfying 〈π , B〉 = 〈π ,U〉 = 0, and ιU ιBω = 0 (conservative motion condition),
whence U ‖ B.

two different plane distributions. Hence, instead of (3.6)2 we introduce the following
condition:

ιU ιBω = 0, (4.33)

enforcing the glide on the plane that is spanned by the Burgers and the line directors.
A dislocation field satisfying (3.6)1 and (4.33) is said to be weakly layered. In other
words, we are requiring that U belongs to the two planes defined by π and ιBω,
see Fig. 9. It should be noted that ιU ιBω = 0 is equivalent to μ(L, B,U) = 0,
and hence, recalling (4.20), Eq. (4.33) enforces the dislocation motion to preserve the
material volumeviaOrowan’s equation, i.e., to be conservative.Assuming 〈π ,U〉 = 0,
Eq. (4.33) holds if and only if the dislocation field falls into one of the following disjoint
categories:

1. Dislocation fields with a screw character, i.e., for which ιBω = 0, see Sect. 3.1;
2. Dislocation fieldswith ιBω �= 0 (edge ormixed) that are layered onπ , as ιBω = π ;
3. Dislocation fields with ιBω �= 0 (edge or mixed) that are not layered on π but for

which U and B are parallel.

The previous result is the analogue of Lemma 4.8 for the condition (4.33). The proof
is straightforward and consists of simply listing the cases in which (4.33) is satisfied
(leaving out the case ιUω = 0). In otherwords ιU ιBω = 0 includes the caseπ∧ω = 0,
and hence, is a weaker condition. Moreover, similar to (4.26), we set

ιUω = � Ũ⊥π̃ ,

where Ũ⊥ = 〈〈U, Ñ〉〉G , and ιÑω = � π̃ . Note that π̃ �= π as ω ∧ π �= 0. Similar
to (4.25) ιUω = −γ̃ π̃ , one has γ̃ = −� Ũ⊥, while (4.27) becomes

∂tϑ
ν =

N∑

a=1

a

γ̃
a

Bν
a

π̃ , or LP =
N∑

a=1

a

γ̃
a

B ⊗ a

π̃ .
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5 The Variational Formulation

In this section, we discuss the dynamics of dislocation fields in single crystals. We
startwith a variational principle of theLagrange–d’Alembert type for non-conservative
processes as in (Marsden and Ratiu 2013) to obtain the governing equations as the
Euler–Lagrange equations associated with both spatial and material variations. While
spatial variations provide the standard balance of linearmomentum,material variations
give the kinetic equations. These are expressed in terms of generalized material forces
and represent a balance of microstructural actions. To this extent, the present theory
falls within the model-building framework for the mechanics of complex materials.
We use a two-potential approach, inwhich the free energy is a function of the strain and
of the internal variables, and the dissipation potential depends on the internal variables
and on their rates. Micro-inertial effects associated with the motion of dislocations are
taken into account, as well as some geometric constraints that the lattice exerts on the
dislocation fields and their motions in order to keep them gliding on assigned lattice
planes. The balance of energy is also derived.

5.1 The Action Principle

In Sect. 4, it was shown that, assuming Orowan’s equation, the kinematics of both
the dislocation fields

a
ην and the lattice forms ϑν is determined by the N material

motions a
χ via (4.15) and (4.18), with the associated initial conditions. Therefore, the

generalized configuration space C for a single crystal is made of (N + 1)-tuples of the

type
(
ϕ,

1
χ, . . . ,

N
χ
)
, expressing placements of points of B in the ambient space S, as

well as those of the dislocation fields in the body B. As the degrees of freedom of the
system are given by maps of B, the configuration space C is infinite dimensional. As
was mentioned earlier, our goal is to derive the governing equations of the system as
the Euler–Lagrange equations associated with a variational principle. Therefore, we
fix a time interval [t1, t2], and look at paths c : [t1, t2] → C in the configuration space.
We define an action functional A on the space of paths, viz.

A(c) =
∫ t2

t1

∫

B
L m dt, (5.1)

where the scalar fieldL is theLagrangiandensity per unitmass.Weconsider variations
of the path c, i.e., one-parameter families of homotopic curves c(t, ε) in C with fixed
end points, and formally denote the first variation operator with δ = d

dε |ε=0. In par-

ticular, variations of the generalized configurations (ϕ,
1
χ, . . . ,

N
χ) are one-parameter

families of motions ϕt,ε and a
χt,ε . It should be noted that the variation δϕ is a vector

in the ambient space, whereas δ
a
χ is a vector in the material manifold. Sections 5.2

and 5.3 are devoted to the formalization of the concepts of spatial and material varia-
tions, respectively.

We assume the existence of a free energy density per unit mass as a functionF of
the pulled-back metric C� = ϕ∗g, the lattice forms ϑν , and the dislocation fields

a
ην .

In short, F = F
(
C�,ϑν,

a
ην
)
. The total free energy is then defined as the integral
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∫
B F m, where m = ρμ is the mass 3-form, with ρ being the material mass density.
The kinetic energy density per unit massT can be written as the sum of a spatial part
TS = 1

2‖V‖2g associated with the motion ϕ in the ambient space, plus a material part

TM (ϑν,
a
ην,

a

U) associated with the dislocation motions. This micro-kinetic energy
TM is responsible for the presence of inertial terms in the kinetic equations, i.e., the
equations of motion for the dislocation fields (Eshelby 1953; Hirth et al. 1998). Then,
one defines the Lagrangian density asL = T −F = TS +TM −F , or with explicit
reference to its arguments, as

L (C�, V ,ϑν,
a
ην,

a

U) = TS(V ) + TM (ϑν,
a
ην,

a

U) − F (C�,ϑν,
a
ην). (5.2)

We assume a Lagrange–d’Alembert-type variational principle, stating that the gen-
eralized configurations at ε = 0 satisfy the following identity:

δA +
N∑

a=1

∫ t2

t1

∫

B
〈 a
τ , δ

a
χ〉μ dt +

∫ t2

t1

∫

∂B
〈t, δϕ〉 ς dt +

∫ t2

t1

∫

B
〈b, δϕ〉m dt = 0,

(5.3)

for all variation fields δϕ and δ
a
χ , a = 1, 2, . . . , N . The 1-forms

a
τ , t and b in (5.3)

have the following interpretations.

• a
τ is a field of material 1-forms on B representing the drag force exerted by the
lattice on the motion of the a-th dislocation field in the material manifold, a =
1, 2, . . . , N . This means that glide is an irreversible process that dissipates energy.

• t is a field of spatial 1-forms on the boundary ∂ϕ(B) representing the contact forces
(tractions) referred to the material area element.

• b is a field of spatial 1-forms on ϕ(B) representing a body force density per unit
mass.

We also assume the existence of a dissipation potential D ,25 which is a function of
the internal variables and a convex function of the dislocation velocities

a

U , such that
the drag force on the motion of the a-th dislocation field can be written as

a
τ = −ρ

∂D

∂
a

U
. (5.4)

It should be noted that the body B is assumed fixed,26 and so is the material mass form
m, as it does not depend on any of the internal variables by virtue of mass conservation
(Sozio and Yavari 2020). Therefore, the variation operator δ in the first term of (5.3)

25 See Germain et al. (1983), Goldstein et al. (2002), and Kumar and Lopez-Pamies (2016) for discussions
on the dissipation potential in the context of thermomechanics, classical mechanics and viscoelasticity. For
a similar approach, see Ziegler (1958) and Ziegler and Wehrli (1987) for discussions on the dissipation
function.
26 This is the case for most problems in anelasticity, unless some accretion process, such as growth by
addition of material or by diffusion/migration of nutrients, is involved (Sozio and Yavari 2019).
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can be brought inside the integral (5.1), which is one of the advantages of working
with densities per unit mass. This means that our variational approach consists of
calculating the quantity δL associated with both the spatial and material variations
δϕ and δ

a
χ .

5.2 Spatial Variations

Spatial variations can be seen as perturbations of the configuration mapping ϕ, while
the material motions 1

χ, . . . ,
N
χ are kept unperturbed. They allow one to obtain the

standard balance of linear momentum and traction boundary conditions. We consider
one-parameter families of motions ϕt,ε during a time interval [t1, t2], such that for
ε = 0 one recovers themotionϕt that satisfies the Lagrange–d’Alembert principle, and
such that all the trajectories agree at their endpoints, i.e., ϕt1,ε and ϕt2,ε do not depend
on ε. We denote with δϕ the vector field tangent to the curves ε �→ ϕt,ε(X) in S, for
X and t fixed, and evaluated at ε = 0. In geometric terms, setting ϕt,X : ε �→ ϕt,ε(X)

for X and t fixed, δϕ can be expressed as

δϕ = (ϕt,X )∗
(

∂
∂ε

) ∣∣∣
ε=0

.

Note that one has δϕ(t1) = δϕ(t2) = 0 as all the trajectories agree at their endpoints.
As was mentioned earlier, we denote δ = d

dε |ε=0.27 It should be noted that the micro-
kinetic energy TM in (5.2) was assumed independent of both V and C� and hence
has vanishing spatial variation. Following a procedure that is well-known in solid
mechanics, one obtains the balance of linear momentum in terms of the first Piola–
Kirchhoff stress tensor (Simo et al. 1988; Sozio and Yavari 2020).

Let us next introduce and discuss stress tensors. First, as is customary in hyperelas-
ticity, we define the second Piola–Kirchhoff stress as the following symmetric tensor
of the type (2, 0):

S = 2ρ
∂F

∂C�
, (5.5)

which is conjugate to variations of the pulled-back metric C�. For every point X ∈ B,
one can look at the tensor SX as an operator SX : T ∗

XB → TXB acting on a 1-form
ν to give a vector S(ν) with components SABνB . With the same notation, the first
Piola–Kirchhoff stress P is defined as the two-point tensor of the type (2, 0) that
satisfies

P(ν) = FS(ν), (5.6)

for any 1-form ν. This is sometimes written as P = FS. Hence, at every point X ∈ B
the first Piola–Kirchhoff stress can be seen as an operator P X : T ∗

XB → Tϕ(X)ϕ(B)

27 Unlike scalar fields, the first variation of a tensor field is well defined when the base point does not
change as ε varies. For example, while δC� is well defined, the expression δV is not, as by changing ε, one
also changes the trajectory. In order to define δV one needs to identify tangent spaces at different points of
S, e.g., via a connection.
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acting on a material 1-form ν to give a spatial vector P(ν) with components PaBνB .
One can also define (1, 1) variants of the second Piola–Kirchhoff stress by lowering
one of the two indices (either one by symmetry) via the material metric G to obtain a
tensor S�, or via the pulled-back metric C� = ϕ∗g to obtain a tensor M, viz.

〈ν, S�Y 〉 = 〈〈S(ν),Y 〉〉G, 〈ν, MY 〉 = 〈〈S(ν),Y 〉〉C� , (5.7)

for any 1-form ν and vector Y . From the symmetry of S, it follows that S� and M are
self-adjoint with respect to G and C�, respectively (Epstein and Maugin 1990). The
tensor M is called the Mandel stress. The (1, 1) variant of the first Piola–Kirchhoff
stress is obtained by lowering the spatial index via the ambient metric g, viz.

〈ν, P y〉 = 〈〈P(ν), y〉〉g,

for any 1-form ν and vector y. This can be seen as a map Tϕ(B) → TB, or, in the
dual version P�, as a map T ∗B → T ∗ϕ(B). Note that since C� = ϕ∗g one can also
define the Mandel stress as M = PF. The balance of linear momentum in terms of
the mixed first Piola–Kirchhoff tensor P is expressed as

Div P + ρβ = ρA�, (5.8)

with the boundary condition

P�ν = t on ∂B. (5.9)

It should be noted that when assigning the 1-form t onB, Eq. (5.9) represents a traction
boundary condition. However, when the deformation map (displacement) is assigned
on part or on the entire boundary ∂B, the 1-form t becomes a Lagrange multiplier
associated with the constraint ϕ = ϕ.

Remark 5.1 TheMandel stress can be interpreted in the light of work conjugacy. First,
from Sect. 4.1 one should recall that the time derivative of the pulled-back metric
can be written as ∂tC� = ∂tϕ

∗g = 2 syml�. Then, from the definition of Mandel
stress (5.7)2, one obtains

1

2
〈S, ∂tC�〉 = 〈S, ϕ∗syml�〉 = 〈S, ϕ∗l�〉 = 〈M,L〉, (5.10)

where use was made ofL = ϕ∗l . This means that theMandel stress is work-conjugate
to the total rate of deformationL = ϕ∗∇(g)v. See also Remark 6.1 for an interpretation
of Mandel stress under the assumption of purely hyperelastic free energy. TheMandel
stress can also be interpreted in the light of Cauchy’s stress theorem. As a matter of
fact, from M = PF one can write (5.9) as t = F−�M�ν, and hence, ϕ∗t = M�ν. In
other words, theMandel stress represents the pullback of contact forces, and therefore,
it does work on pullbacks of displacements. This is a consequence of the fact that M
is defined by lowering an index of S using the pulled-back metric C� = ϕ∗g. On the
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other hand, the tensor S� was obtained through the material metric G, and hence, it
cannot be paired with spatial displacements.

5.3 Material Variations

Next we consider variations of the dislocation motions 1
χ, . . . ,

N
χ . The goal is to obtain

the kinetic equations for the internal variables as the Euler–Lagrange equations asso-
ciated with variations of the material motions. We refer to a generic Lagrangian as
in (5.2), and the results will be used to derive the governing equations for more spe-
cific cases in Sect. 6. We focus on the a-th dislocation material motion while keeping
all the others unperturbed. In particular, we define a two-parameter family of diffeo-
morphisms as a map a

χ : B × [t1, t2] × [−εo, εo] → B (Bruni et al. 2003).28 The
family a

χt,ε is such that at ε = 0 one recovers the material motion a
χt that satisfies

the Lagrange–d’Alembert principle, and such that all the trajectories agree at their
endpoints, i.e., a

χt1,ε = χt1 and
a
χt2,ε = χt2 for all ε. Let

a
χε,X : t �→ a

χt,ε(X) for X and
ε fixed, and a

χt,X : ε �→ a
χt,ε(X) for X and t fixed. Then, we define the vectors

a
u = a

χε,X ∗ (∂t ) ,
a
w = a

χt,X ∗
(

∂
∂ε

)
.

Notice that
a
u is the velocity of the orbits of a

χε,X , and
a
w is the ε-velocity of the orbits

of a
χt,X . Therefore, for every pair (t, ε) the following vector fields are defined on B:

a

U(X , t, ε) = a
u(

a
χ−1
t,ε (X), t, ε),

a

W(X , t, ε) = a
w(

a
χ−1
t,ε (X), t, ε).

For a fixed X , the velocities
a
uX and

a
wX can be considered as vector fields on

the surface OX ⊂ B made of points a
χt,ε(X) spanned by t and ε in the respective

intervals. (We assumeOX to be regular.) By doing so,
a
u and

a
w are coordinate vectors

(t, ε) on OX , and therefore they satisfy [ au,
a
w] = 0 on OX . In components, this reads

∂ε
a
uA = ∂t

a
wA and is a consequence of the fact that the second derivatives of a smooth

a
χ A commute. On the other hand, for the “Eulerian fields”

a

U and
a

W on B, in general
one has ∂ε

a

U �= ∂t
a

W , and [ a

U,
a

W ] �= 0, as shown in the following lemma, where we
omit the index a for the sake of simplicity.29

Lemma 5.2 Let U andW be the generators of the two-parameter family of diffeomor-
phisms χt,ε on B. Then, ∂εU − ∂tW = [U,W ].

28 As was discussed in Remark 4.2, although a material motion during the time interval [t1, t2] might be
defined for a subbody of B (or might not even be defined at all), given a material dislocation velocity one
can locally define sequences of well-defined material motions on smaller intervals, so that the same results
hold as if one assumes a well-defined global material motion on the whole time interval [t1, t2]. In the case
of two-parameter families of diffeomorphisms, this argument extends to the parameter ε.
29 The identity ∂εU − ∂tV = [U, V ] given in Lemma 5.2 is not original as it can be found in (Marsden
and Ratiu, 2013) in the context of incompressible fluids and Lin constraints. However, to our knowledge it
has not been used in the context of dislocation plasticity.
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Proof We prove the result using components. The derivative of the t-velocity v along
the ε-orbit is written as

∂εu
A(t, ε) = ∂εU

A(χ(X , t, ε), t, ε) = U A,B W B + ∂εU
A,

while the derivative of the ε-velocity w along the t-orbit reads

∂tw
A(t, ε) = ∂tW

A(χ(X , t, ε), t, ε) = W A,B U
B + ∂tW

A.

As was discussed earlier, ∂twA = ∂εv
A. Therefore, one obtains

∂εU
A − ∂tW

A = UBW A,B −WBU A,B ,

where the right-hand side is the component representation of [U,W ]. ��
The vector field δ

a
χ(X , t) = a

W(X , t, 0) is called the first variation of a
χ . From

Lemma 5.2, evaluating at ε = 0, one obtains the first variation of the a-th dislocation
material velocity

a

Uε as

δ
a

U = ∂tδ
a
χ + [ a

U, δ
a
χ ], (5.11)

while the variations of all the other velocities
b

Uε associated with the unperturbed
distributions, i.e., for b �= a, are zero.

As the kinematics of both
a
ην and ϑν is fully determined by the material motions

a
χ , the introduction of the two-parameter family of diffeomorphisms a

χt,ε allows one
to derive the evolution of the internal variables along the ε parameter. In particular,
the dislocation fields

a
ην

ε follow (4.9), and hence, one can write

a
ην
t,ε = (

a
χt,ε)∗

a
ηt,0. (5.12)

By differentiating (5.12) with respect to ε, one obtains the ε-evolution equation of a
dislocation field as

∂ε
a
ην = −L a

W

a
ην, (5.13)

which is the analogue of (4.10). This can be evaluated at ε = 0 to give the first variation
of a dislocation field, viz.

δ
a
ην = −L

δ
a
χ

a
ην . (5.14)

In the case of closed dislocation fields, one has

δ
a
ην = −dι

δ
a
χ

a
ην . (5.15)

The variations of all the distributions
b
ην

ε vanish for b �= a. Next we derive an expres-
sion for the variation of the lattice frame ϑν

ε when the dislocation field is closed and
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Orowan’s equation (4.18) is assumed. This result relies on the hypothesis that the first
variations δ

a
χ are coplanar with the dislocation curves and dislocation velocity of the

respective dislocation field, and it represents the analogue of Orowan’s equation along
the perturbation parameter. This hypothesis is written asμ(

a

δχ,
a

U,
a

L) = 0, and will be
justified in Sect. 5.4. Note that, under the glide assumption 〈 a

π ,
a

U〉 = 0, the condition
μ(

a

δχ,
a

U,
a

L) = 0 implies that μ(
a

δχ,
a

B,
a

L) = 0, which means isochoric variations,
cf. Remark 4.4. As in Lemma 5.2, the dislocation index a will be omitted for the sake
of simplicity.

Lemma 5.3 Let {ην} be a closed decomposable dislocation field convected by a two-
parameter family of material motions χ such that δχ satisfies ιδχ ιUω = 0, i.e.,
μ(δχ,U, L) = 0. Then, Orowan’s equation implies that the variation of the lattice
coframe is written as

δϑν = −ιδχην . (5.16)

Proof Since variations of a single dislocation motion are considered, from (4.20) one
can write the mixed derivative of a lattice form as

∂ε∂tϑ
ν = −∂ειUην = −ι∂εUην − ιU∂εη

ν,

where the Leibniz rule has been used to obtain the second equality. Using Lemma 5.2
for the first term of the above identity, and Eq. (5.15) for the second term, the mixed
derivative of a lattice form is written as

∂ε∂tϑ
ν = −ι∂tWην − ι[U,W ]ην + ιUdιWην .

Cartan’s formula (A.4) implies that the operator ιUdιW −ιWdιU on the space of closed
2-forms is equal to the operator −dιU ιW + ι[U,W ].30 Moreover, one has ∂ε∂tϑ

ν =
∂t∂εϑ

ν , and hence,

∂t∂εϑ
ν = −ι∂tWην + ιWdιUην + dιW ιUην

= −ι∂tWην − ιW∂tη
ν + dιW ιUην

= −∂t
(
ιWην

)+ dιW ιUην .

30 This can be obtained as follows

2 (ιV dιW − ιW dιV ) ω = (ιV dιWω − ιW dιVω) + (ιV dιWω − ιW dιVω)

= (LV ιWω − dιV ιVω − LW ιVω + dιW ιVω) + (ιVLWω − ιWLVω)

= (
ι[V ,W ]ω + ιWLVω − dιV ιWω − ι[W ,V ]ω − ιVLWω + dιW ιVω

)

+ (ιVLWω − ιWLVω) = 2ι[V ,W ]ω − 2dιV ιWω,

where use was made of Cartan’s formula and dω = 0 in the second equality, and of the Leibniz rule in the
third.
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Integrating over time between t1 and t and evaluating at ε = 0, one obtains

δϑν = −ιδχην +
∫ t

t1
dιδχ ιUην dt,

as all variations vanish at t1. The hypothesis ιδχ ιUω = 0 implies ιδχ ιUην = 0 for all
ν, and hence, one obtains (5.16). ��

Next we take variations of the action (5.1). Since the kinetic energy does not depend
on the material motions, one has δL = δTM − δF . Then, we define the following
generalized material forces:

Y ν = −ρ
∂L

∂ϑν = ρ
∂(F − TM )

∂ϑν ,

��
b

ξ ν = −ρ
∂L

∂
b
ην

= ρ
∂(F − TM )

∂
b
ην

,

b

ψ = ρ
∂L

∂
b

U
= ρ

∂TM

∂
b

U
. (5.17)

In the case of negligible inertial effects associated with the dislocation motions, one
can set TM = 0, so that the generalized material forces read

Y ν = ρ
∂F

∂ϑν , ��
b

ξ ν = ρ
∂F

∂
b
ην

,
b

ψ = 0. (5.18)

Recall that we are looking at variations of the a-th dislocation material motion while

keeping all the others unperturbed, meaning that δ
b
χ , δ

b
ην , and δ

b

U vanish for b �= a.
Therefore, using the definition of the generalized material forces (5.17), and recalling
that the mass and the volume forms are related through the mass density as m = ρμ,
one can express the variation of the total Lagrangian as

∫

B
δL m = −

∫

B
〈
δϑν,Y ν

〉
μ −

∫

B
a

ξ ν ∧ δ
a
ην +

∫

B
〈 a

ψ, δ
a

U〉μ, (5.19)

where (A.6) was used to write the pairing in the second term using the wedge product.
The generalized material forces have the following interpretations.

• The microforces Y ν are a triplet of vectors that are work-conjugate to the changes
of the lattice frame.

• Themicrostresses
a

ξ ν are triplets of 1-forms that are work-conjugate to the changes
of the a-th dislocation field and have been defined so that conjugacy is expressed
through the exterior product to give a 3-form that is ready to be integrated on B.

• The micro-inertial force
a

ψ is a 1-form that is work-conjugate to the changes of the
a-th dislocation velocity.

Note that the action functional and the Lagrangian density are related through (5.1),
and hence, integrating (5.19) over the time interval [t1, t2] one obtains δA. Thus, since
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the spatial variation δϕ is set to zero, the Lagrange–d’Alembert principle (5.3) can be
written as

∫ t2

t1

∫

B

{
− 〈δϑν,Y ν

〉
μ − a

ξ ν ∧ δ
a
ην +

〈 a

ψ, δ
a

U
〉
μ + 〈 a

τ , δ
a
χ〉μ

}
dt = 0 . (5.20)

Similar to spatial variations, the integral (5.20) can be written as a local functional of
δ

a
χ , which allows one to use the fundamental lemma of the calculus of variations and
obtain the Euler–Lagrange equations associated with the internal degrees of freedom.
From the calculations given inAppendixD thatmakeuse of the identities (5.11), (5.15),
and (5.16) as well as of Stokes’ theorem (A.10), one obtains:

∫ t2

t1

∫

∂B

〈
〈aξ ,

a

L〉 ν − 〈ν,
a

L〉 a

ξ + 〈ν,
a

U〉 a

ψ , δ
a
χ
〉
ς dt

+
∫ t2

t1

∫

B

〈
−ιYν

a
ην − ι

��d
a
ξν

a
ην − T a

U

a

ψ + a
τ , δ

a
χ

〉
μ dt = 0,

(5.21)

with
a

ξ = a
�

a

Bν
a

ξ ν , and where T a
U

a

ψ denotes the Truesdell derivative along
a

U ,

see Appendix C. Thus, the arbitrariness of δ
a
χ gives the following field equations:

ιYν

a
ην + ι

��d
a
ξν

a
ην + T a

U

a

ψ = a
τ , a = 1, 2, . . . , N . (5.22)

Equation (5.22) constitutes the kinetic equations for the dislocation material motion,
which we assumed to be conservative (i.e., inducing volume-preserving plastic defor-
mation) in Lemma 5.3. Kinetic equations govern the evolution of the internal variables
and were introduced by Coleman and Gurtin (1967) and Rice (1971) in the context of
continuum thermodynamics and of inelastic solids. The rate of change of the internal
variables is usually given as an expression of the thermodynamic forces associated
with them. In the present setting, these equations are written in the following form

a

U = a

U (ϑν,
a
ην,Y ν,

a

ξ ν), a = 1, 2, . . . , N . (5.23)

It should be noticed that, in general, the kinetic equations (5.22) we just derived
cannot be reduced to the form (5.23). However, this is possible under the assumption
of negligible micro-inertial effects. As amatter of fact, since

a

U and
a
τ are in one-to-one

correspondence by virtue of the convexity of the dissipation potential D with respect
to

a

U , one can invert (5.22) to write

a

U = τ−1
(
ιYν

a
ην + ι

��d
a
ξν

a
ην
)

, a = 1, 2, . . . , N . (5.24)

where we set
a

U = τ−1(
a
τ ), and where the micro-inertial term T a

U

a

ψ was neglected.
Lastly, it should be noticed that the kinetic equations (5.22) and (5.24) can also be
interpreted as the equations of motion for the dislocation fields.
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From (5.21), one also obtains the following boundary conditions on ∂B, viz.

〈aξ ,
a

L〉 ν − 〈ν,
a

L〉 a

ξ + 〈ν,
a

U〉 a

ψ = 0 , a = 1, 2, . . . , N , (5.25)

where ν is the unit normal 1-form on ∂B. Equation (5.25) represents natural boundary
conditions, i.e., conditions that are not enforced on the material motion a

χ or on other
internal variables, but instead on their thermodynamic-conjugate quantities.

It should be noted that the generalized stresses
a

ξ ν induce a non-local effect, in
the sense that not only do they appear in the kinetic equations (5.22) in terms of
their exterior derivative, but they also appear in the boundary conditions (5.25). This
happens because they are associated with changes of the dislocation fields, governed
by Eq. (5.15) and involving the derivatives of δ

a
χ . Other non-local contributions come

from the micro-inertial forces
a

ψ , as a consequence of (5.11), and hence of Lemma 5.2.
These forces appear in the kinetic equations in terms of their Truesdell derivative, as
well as in the boundary conditions. Note that this does not occur in the case of the
macro-inertial forces, as no nonlocal expression of the acceleration is involved in the
balance of linear momentum. The reason for this difference is due to the way TS and
TM depend on the respective velocities. As a matter of fact, the spatial kinetic energy
is defined in a Lagrangian way, i.e., by following the trajectories of the spatial motion.
On the other hand, since the dislocation motion does not involve the actual movement
of material points, the kinetic energyTM is defined in a Eulerian way, i.e., by keeping
each point fixed. This is also convenient as the other two arguments C� and ϑν are not
convected quantities. The details of the calculations are given in Appendix D.

5.4 Lattice Constraints

Layered dislocation fields were introduced in Sect. 3.3 as those for which the
Burgers director and the dislocation curves locally lie on a plane distribution. Their
glide motion was studied in Sect. 4.4 and is characterized by a velocity vector that
lies on the plane distribution on which the dislocations are layered. In particular, a
decomposable layered dislocation field

a
ην = a

Bν a
ω gliding with velocity

a

U is subject
to the conditions (3.6)1, (3.6)2 and (4.24), viz.

a
πν

a

Bν = 0 ,
a
π ∧ a

ω = 0 , 〈 a
π ,

a

U〉 = 0. (5.26)

These conditions can be seen as internal constraints that the lattice structure exerts
on the dislocation field and its motion. In particular, the layer constraints (5.26)1
and (5.26)2 are holonomic, while the glide constraint (5.26)3 on the velocity is non-
holonomic.31 It should be noted that in single crystals the scalars πν are uniform in
space and constant in time, while the scalars Bν evolve only through changes of the
base point via (4.11). Therefore, if πνBν = 0 at a given time, then πνBν = 0 at

31 Here, non-holonomic does not refer to the property of a moving frame on B of being induced by local
charts and used to express the incompatibility of the lattice structure. It indicates that a constraint depends
on the generalized velocities.
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all times, and hence, the constraint (5.26)1 is redundant. Instead, as was shown in
Lemma 4.8, the constraints (5.26)2 and (5.26)3 are independent, and hence, they are
both necessary. Thus, we define the following lattice constraint functions:

b

fL(ϑν,
a
ην) = b

π ∧ b
ω ,

b

fG(ϑν,
a

U) = 〈 b
π ,

b

U〉 . (5.27)

Note that these functions are independent of the spatial configuration, and hence, the
introduction of lattice constraints only affects material variations. For this reason, we
look at the Lagrange–d’Alembert principle corresponding to material variations in the
form (5.21).

Denoting with
a

β∂ and
a

β the 1-forms in (5.21) acting on δ
a
χ |∂B and δ

a
χ , respectively,

the Lagrange–d’Alembert principle can be written in the form

∫

∂B
〈 a

β∂ , δ
a
χ〉 ς +

∫

B
〈 a

β, δ
a
χ〉μ = 0 , a = 1, 2, . . . , N , (5.28)

so that the kinetic equations for the unconstrained problem read
a

β = 0, and the asso-

ciated boundary conditions are
a

β∂ = 0. Because of the presence of the constraints
b

fL

and
b

fG , for a = 1, 2, . . . , N , (5.28) must hold only for all N -tuples of material varia-
tions (δ

1
χ, . . . , δ

N
χ) in the space of virtual material displacements V . In the following,

we construct this space.

We start by looking at the holonomic layer constraint
b

fL . Since we are considering
variations of only the a-th dislocation field, from (5.15) and (5.16) one can write

δ
b

fL = δ
b
π ∧ b

ω + b
π ∧ δ

b
ω = − b

πν ι
δ
a
χ

a
ην ∧ b

ω − a
π ∧ dι

δ
a
χ

a
ω . (5.29)

Recalling the definition (3.11) of slip coupling 1-form, the first term in (5.29) can be

written as −
〈
ba
� , δ

a
χ
〉
μ. Note also that δ

a
χ is assumed to lie on the plane distribution

defined by
a
π because of the glide constraint (5.27)2, as will be explained later on.

Therefore, following the calculations given in Lemma 4.8, the second term in (5.29)
can be written as d

a
π ∧ (

a
� δ

a
χ⊥ a

π), which does not involve the index b. Hence, we
obtain

δ
b

fL = −
〈
ba
� , δ

a
χ
〉
μ −

〈
a
� I a

�

a

N�, δ
a
χ
〉
μ ,

which implies that the variation δ
a
χ must satisfy the following condition

∫

B

〈
ba
� + a

� I a
�

a

N� , δ
a
χ
〉
μ = 0 , b = 1, 2, . . . , N . (5.30)

Equation (5.30) for a = 1, 2, . . . , N gives N 2 conditions for the material variations.
However, one should recall from Sect. 4.4 that the 1-forms

ab
� and

ba
� only differ by a
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multiplicative factor, and therefore, the conditions in (5.30) might not be independent,
as in the case of Example 4.11 for N = 2.

Next, we look at the non-holonomic glide constraint (5.27)2. The dynamics of
mechanical systems with non-holonomic constraints can be formulated by following
either the non-holonomic or the vakonomic approach (Lewis andMurray 1995; Cardin
andFavretti 1996).32Wechoose to follow thenon-holonomic approach, as it allowsone
to work with variations that satisfy the hypotheses of Lemma 5.3. As a matter of fact,
in the non-holonomic approach the material variation (material virtual displacement)
δ

a
χ must satisfy

〈
∂

b

fG

∂
a

U
, δ

a
χ

〉
= 〈 a

π , δ
a
χ
〉 = 0 . (5.31)

Note that the previous condition does not involve the index b as the derivative of the b-
th constraint function with respect to the a-th dislocation velocity vanishes for a �= b.
Thus, we have obtained the following requirement for each δ

a
χ :

∫

B
〈 a
π , δ

a
χ
〉
μ = 0 . (5.32)

One should note that the condition 〈 a
π , δ

a
χ〉 = 0 can also be written as 〈ι a

U

a
ω, δ

a
χ〉 = 0

as both
a
ω and

a

U are constrained to lie on
a
π . Hence, the hypotheses of Lemma 5.3 are

satisfied.
In the presence of the constraints

b

fL and
b

fG , the space of virtual displacements
V ⊂ TBN is made of those N -tuples (δ

1
χ, . . . , δ

N
χ) that satisfy both (5.30) and (5.32).

The orthogonal complementV ⊥ ⊂ T ∗BN is the space of nullifiers ofV and is spanned
by the 1-forms

ba
� + a

� I a
�

a

N� and
a
π , for a, b = 1, 2, . . . , N . As was mentioned earlier,

the integrals in (5.28) must vanish for all δ a
χ ∈ V . This implies that

a

β must be in V ⊥,
and that it can be written as the following linear combination:

a

β = a

λL
a
� I a

�

a

N� +
N∑

b=1

b

λL
ba
� + a

λG
a
π . (5.33)

32 In the non-holonomic approach, constraints are enforced after making the action functional stationary
and can be seen as the variational formulation of the principle of virtual work. The vakonomic approach
(from the acronym VAK, meaning variational axiomatic kind (Arnold et al. 1988)) consists of enforcing the
constraints before minimization, and it is the equivalent of the method of Lagrange multipliers (Goldstein
et al. 2002). These two approaches yield different equations although they coincide when the constraints
are holonomic. Given the Lagrange multipliers λh associated with the constraints fh , the Euler–Lagrange
equations derived from the two approaches are

d

dt

∂L

∂ q̇i
− ∂L

∂qi
=
⎧
⎨

⎩

∑
h λh

∂ fh
∂q̇i

(n.h.)
∑

h

(
dλh
dt

∂ fh
∂q̇i

+ λh
d
dt

∂ fh
∂q̇i

− λh
∂ fh
∂qi

)
(v.a.k.)

.
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Fig. 10 Reaction forces exerted by the lattice on the dislocation fields. Left: Strongly layered dislocations.
Right: Weakly layered dislocations

The 1-form
a

β∂ associated with the boundary conditions is not affected. The scalar

fields
a

λL and
a

λG in (5.33) are the Lagrange multipliers associated with the a-th layer
and glide constraint, respectively. Therefore, in the presence of lattice constraints, the
kinetic equation (5.22) must be modified to read

ιYν

a
ην + ι

��d
a
ξν

a
ην + T a

U

a

ψ = a
τ + a

λL
a
� I a

�

a

N� +
N∑

b=1

b

λL
ba
� + a

λG
a
π , a = 1, . . . , N .

(5.34)

The three terms added as a consequence of the constraints represent the reaction forces
exerted by the lattice on the dislocation fields and are shown in Fig. 10. They have the
following interpretations.

• The 1-form
a

λL
a
� I a

�

a

N� is the part of the reaction force that the lattice exerts on the
a-th dislocation field to keep its curves layered on its glide plane. It is associated
with the lack of integrability of the glide plane distribution. It acts along the glide
plane and orthogonal to the line director, see also Fig. 5.

• The 1-form
b

λL
ba
� is that part of the reaction force that the lattice exerts on the

a-th dislocation field to keep its curves layered on its glide plane. It represents the
effect of the b-th slip system on the a-th slip system, and hence, it is a non-Schmid
effect.33 It is perpendicular to both the a-th and b-th line directors.

• The 1-form
a

λG
a
π is the reaction force that constrains the glide velocity of the a-th

dislocation field to lie on its plane distribution and is perpendicular to the glide
plane.

One may ask what happens if the layer condition (5.26)2 is dropped while keeping
the conditions (5.26)1 on

a

B and (5.26)3 on
a

U . Aswas pointed out earlier, the hypothesis

33 According to Schmid’s law, a slip system is activated when the associated resolved shear stress reaches
a critical value. However, single crystals show deviations from it, as slip systems are activated by the effect
of the respective resolved shear stress, as well as of the ones on different slip systems. In our formulation, a
non-Schmid response occurs every time the dynamics of a layered dislocation field, say the a-th dislocation

field, is directly affected by the b-th dislocation field, with b �= a and
b
� �= a

� (note that
ba
� = 0 when

b
� = a

�, see Sect. 3.3).
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ι a
U

ι
δ
a
χ

a
ω = 0 of Lemma 5.3—that was used to obtain the kinetic equations—relies

on the glide constraint
b

fG as well as on the layer constraint
b

fL . Hence, instead of
simply discarding it, we replace the layer constraint with the weaker version (4.33),
introducing the following constraint functions:

b

fW (ϑν,
a
ην,

a

U) = ι b
U

ι b
B

b
ω ,

b

fG(ϑν,
a

U) = 〈 b
π ,

b

U〉 .

Both functions represent a non-holonomic constraint and are to be treated with the
non-holonomic approach, giving conditions similar to (5.31), viz.

〈
∂

b

fW

∂
a

U
, δ

a
χ

〉
= 〈

ι a
B

a
ω , δ

a
χ
〉 = 0 ,

〈
∂

b

fG

∂
a

U
, δ

a
χ

〉
= 〈 a

π , δ
a
χ
〉 = 0 . (5.35)

As was mentioned earlier, under the glide assumption, the condition (5.35)1 is equiv-
alent to the hypothesis ι a

U
ι
δ
a
χ

a
ω = 0 of Lemma 5.3, and hence, the calculations given

in Sect. 5.3 are still valid. Furthermore, the weakening of the layer constraint allows
one to include a broader class of dislocations in the model. Denoting with

a

λW the
Lagrange multiplier associated with

a

fW , Eq. (5.34) is modified to read

ιYν

a
ην + ι

��d
a
ξν

a
ην + T a

U

a

ψ = a
τ + a

λW ι a
B

a
ω + a

λG
a
π , a = 1, 2, . . . , N . (5.36)

Each reaction force
a

λG
a
π and

a

λW ι a
B

a
ω is perpendicular to the plane on which the

respective constraint enforces glide, i.e., those defined by the 1-forms
a
π and ι a

B

a
ω, as

shown in Fig. 10. Keeping in mind the characterization of weakly layered dislocation
fields given in Sect. 4.4, the force

a

λW ι a
B

a
ω vanishes for dislocations that either have a

screw character or are layered on
a

�, while in the case of non-screw dislocation fields
that are not strongly layered, the two reaction forces are necessary to keep the velocity
a

U parallel to the Burgers director
a

B.

5.5 Balance of Energy

The governing equations were derived using a Lagrange–d’Alembert principle for
non-conservative processes starting from a Lagrangian function. Next we look at the
rate of change of quantities such as free energy, entropy and total energy. First, for
the sake of simplicity, we assume negligible micro-inertial effects by settingTM = 0,
so that the generalized forces are given in (5.18). By doing so, both the microforces

Y ν and microstresses
a

ξ ν can be obtained by simply differentiating the free energy
function F . Therefore, recalling (5.10), one can write the rate of change of the free
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energy in terms of the generalized forces, viz.

∂tFm = 〈M,L〉μ + 〈
∂tϑ

ν,Y ν

〉
μ +

N∑

a=1

a

ξ ν ∧ ∂t
a
ην .

Following the calculations given in Appendix D, one can use the kinetic equa-
tions (5.22) to write

∂tF m = 〈M,L〉μ +
N∑

a=1

〈 a
τ ,

a

U〉μ +
N∑

a=1

d
(a

ξ ν ∧ ι a
U

a
ην
)

. (5.37)

Note that the constraint reactions have not been included in (5.37) as they do not do
work on dislocation displacements. This is a consequence of the fact that the holonomic
constraint (5.27)1 does not explicitly depend on time (it is scleronomous), while the
non-holonomic constraint (5.27)2 is linear in the dislocation velocities (Neı̆mark and
Fufaev 2004; Fassò and Sansonetto 2015). Equation (5.37) constitutes the first law of
thermodynamics for our system. The term 〈M,L〉 is the work done by the internal
forces per unit material volume, while the other terms are associated with changes in
entropy. In particular, we define the entropy production density (per unit volume) as a
scalar field ϒ , and the entropy flux as a vector field � (Müller 1967), viz.

ϒ = −
N∑

a=1

〈 a
τ ,

a

U〉 , � = −
N∑

a=1

��
(a

ξ ν ∧ ι a
U

a
ην
)

. (5.38)

It should be noted that the entropy flux is generated by the microstresses and hence
comes from the explicit dependence of the free energy on the dislocation fields. As
constant thermodynamic temperature θ is assumed, the entropydensity per unit volume
N can be defined by ρ θ ∂tN = 〈M,L〉 − ρ ∂tF . Thus, using (A.8) to express the
non-local term in (5.37) as the divergence of the entropy flux, the balance of entropy
reads

ρ θ ∂tN = ϒ + Div� .

Note that from the convexity of the dissipation potential D , the entropy production is
automatically nonnegative, and hence the second law of thermodynamics is satisfied
(Steigmann 2020).34 In the case of a dissipation potential D that is quadratic in the
dislocation velocities

a

U , the entropy production density can be written as ϒ = 2D
(Goldstein et al. 2002). Examples of this kind of dissipation potentials are given
in Sect. 6.2.

34 This follows from convexity as well as from the assumption that D attains its minimum for vanishing
a
U . The convexity of D in the variable

a
U implies that

D(
a
U) +

〈
∂D

∂
a
U

(
a
U), �

a
U
〉

≤ D(
a
U + �

a
U) .
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Under the assumption of vanishing TM , the total energy density is defined as the
scalar field E = TS + F . Hence, ∂tE = 〈〈A, V 〉〉 + ∂tF . Note that the balance of
linear momentum (5.8) allows one to write35

〈〈ρA, V 〉〉 + 〈M,L〉 = 〈ρb, V 〉 + 〈Div P, V 〉 + 〈M,L〉 = 〈ρb, V 〉 + Div(PV ) .

Then, from the first law (5.37) one obtains the local balance of total energy as

∂tEm = 〈b, V 〉m + Div(PV )μ +
N∑

a=1

〈 a
τ ,

a

U〉μ +
N∑

a=1

d
(a

ξ ν ∧ ι a
U

a
ην
)

. (5.39)

The global balance of total energy can be obtained by integrating (5.39) onB. Note that
the integral of the entropy flux vanishes by virtue of the boundary conditions (5.25)

with
a

ψ = 0,while fromDiv(PV ) one recovers the tractions t through (5.9). Therefore,
bringing the time derivative outside the integral, one obtains

d

dt

∫

B
E m =

∫

∂B
〈t, V 〉 ς +

∫

B
〈b, V 〉m +

N∑

a=1

∫

B
〈 a
τ ,

a

U〉μ . (5.40)

The first two terms on the right-hand side of (5.40) represent the power supplied by
the external forces, while the last term is the dissipated power by the effect of the
dislocation motion.

When taking into account the contribution of the micro-inertial forces associated
with the motion of dislocations, the rate of change of the free energy cannot be
expressed in terms of the generalized forces alone, as the micro-kinetic energy TM

depends on the internal variables. As a result, one would need to distinguish the con-
tribution to microforces and microstresses that is due toF from the one coming from
−TM , cf. (5.17). As for the total energy density in the presence of dislocation inertial
forces, it is defined as E = TS + TM + F . It should be noticed that the balance of
the total energy (5.40) holds in this case as well. In fact, by virtue of the boundary

Footnote 34 continued
Choosing �

a
U = − a

U , one has

〈
∂D

∂
a
U

(
a
U),

a
U
〉

≥ D(
a
U) − D(0) ≥ 0 ,

as D attains its minimum for
a
U = 0. The entropy production ϒ can be expressed by plugging (5.4)

into (5.38)1, viz.

ϒ = ρ

N∑

a=1

〈
∂D

∂
a
U

,
a
U
〉
.

Therefore, we conclude that the entropy production ϒ is a sum of nonnegative terms, whence ϒ ≥ 0.
35 For two-point tensors, one can write ∇ = F�∇ g , i.e., ∇A = Fa A∇ g

a , see (Marsden and Hughes 1983;
Sozio and Yavari 2020). Since L = ϕ∗∇ gv, one has 〈M,L〉 = 〈P,∇v〉.
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conditions (5.25) the flux of micro-kinetic energy across ∂B is counterbalanced by the
nonlocal effects associated with microstresses.

6 A SimplifiedModel for Nonlinear Dislocation Dynamics

In the previous section, we presented a variational formulation for the dynamics of
solids with distributed dislocations and derived the corresponding Euler–Lagrange
equations. The free energy was assumed to be a function of some external and internal
variables. In this section, we introduce a simplified model for gliding layered dislo-
cations, in which we neglect the micro-inertial forces associated with the dislocation
motions as well as other nonlocal effects. We assume that the only contribution to
the free energy comes from the elastic strains of the lattice. As a consequence, elastic
deformations induce a material force acting on dislocation fields known as the Peach–
Koehler force (Peach and Koehler 1950). We also discuss constitutive classes for the
dissipation potential.

6.1 The Peach–Koehler Force

We start by assuming that free energy does not explicitly depend on the distribution of
dislocations, i.e.,F = F (C�,ϑν), and is entirely associated with the elastic response
of the material. This means that we assume the existence of an elastic energy W (C�

E)

per unit mass,36 where the elastic pulled-back metric is defined as

C�
E(V ,W) = g(FEV , FEW) = C�(F−1

P V , F−1
P W) , (6.1)

for all vectors V ,W , or in terms of the lattice coframe, as

C�
E

(
∂

∂Zμ , ∂
Zν

) = C�(eμ, eν) , (6.2)

with Zν indicating Cartesian coordinates on B defined in Sect. 2. In a more compact
form, C� = F�

PC
�
EFP. The functionF (C�,ϑν) is then derived from the elastic energy

W (C�
E) through the change of variables (6.1) or (6.2).We also neglect themicro-kinetic

energyTM , which would necessarily introduce a dependence on the dislocation fields

in the Lagrangian, and hence non-vanishing microstresses
a

ξ .
The microforces, defined in (5.18)1 as the derivative ofF with respect to the lattice

frame ϑν , are related to the second Piola–Kirchhoff stress S, defined in (5.5) as the
derivative with respect to C�. In particular, one finds

Y ν = ρ
∂F

∂ϑν = −Meν , (6.3)

36 In classical plasticity, it is customary to work with an elastic energy density per unit volume, and
defined in the intermediate configuration. Although for gliding dislocations the material volume is always
conserved, that might not be the case for climbing dislocations, or for the evolution of other types of defects.
Instead, mass is a conserved quantity for all types of deformations considered in plasticity. For this reason,

we choose to work with a density W (C�
E) per unit mass.
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where M denotes the Mandel stress defined in Sect. 5.2 as the lowering of S through
C�.37 Therefore, in the case of closed dislocation fields obeying Orowan’s equation,
from (6.3), in addition to dissipation, the term in (5.22) coming from the microforces
becomes

ιYν

a
ην = −ιMeν

a
ην = −ιMeν

a

Bν a
ω = −ι

M
a
B

a
ω .

Then, we define the Peach–Koehler force associated with the a-th dislocation field as
the 1-form

aP = ι
M

a
B

a
ω , (6.4)

which is work-conjugate to the dislocation displacements, and constitutes the main

driving force of dislocation dynamics. Note that it can also be written as
aP =

a
� μ(

a

L, M
a

B). Under these assumptions, the kinetic equation (5.34) reads

aP + a

λL I a
�

a

N� +
N∑

b=1

b

λL
ba
� + a

λG
a
π + a

τ = 0 , a = 1, 2, . . . , N , (6.5)

expressing the balance between the Peach–Koehler forces, the constraint reactions,
and the dissipation forces on each slip system. It should be noticed that the component
of the Peach–Koehler force along the dislocation curves vanishes as

〈 aP,
a

L〉 = 〈ι
M

a
B

a
ω,

a

L〉 = −〈ιa
L

a
ω, M

a

B〉 = 0 ,

where use was made of ιa
L

a
ω = 0. As for the component normal to the dislocation

curves, since in Sect. 3.3 it was shown that ι a
N

a
ω = a

�
a
π , one has

〈 aP,
a

N〉 = 〈ι
M

a
B

a
ω,

a

N〉 = −〈ι a
N

a
ω, M

a

B〉 = −a
� 〈 a

π , M
a

B〉, (6.6)

where 〈 a
π , M

a

B〉 is what is commonly called the resolved shear stress on the a-th slip
plane (see Fig. 11). This is usually defined as the component of stress on the slip
plane in the direction of slip, i.e., in the direction of the Burgers director by the effect
of (4.27). It should be emphasized that in the nonlinear setting the resolved shear stress
is a Mandel stress. Lastly, as the lattice reaction forces do not contribute to the balance

37 Eq. (6.3) was derived in (Sozio and Yavari 2020) following a rather standard procedure in plasticity.
The calculations consist of applying the chain rule twice, viz.

∂F

∂ϑν = ∂W

∂C�
E

∂C�
E

∂ϑν = ∂F

∂C

� ∂C�

∂C�
E

∂C�
E

∂ϑν .
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Fig. 11 Components of the
Peach–Koehler force with
respect to a slip plane

of energy, from (6.5) the entropy production is entirely given by the Peach–Koehler
force, viz.

ϒN = −
N∑

a=1

〈 a
τ ,

a

U〉 =
N∑

a=1

〈 aP,
a

U〉 . (6.7)

Remark 6.1 As was mentioned in Remark 5.1, the Mandel stress is work-conjugate to
L. Assuming that the free energy depends only on the elastic strain, from (6.3) one
also obtains

〈
Y ν, ∂tϑ

ν
〉 = 〈

Meν, ∂tϑ
ν
〉 = −〈M,LP〉 ,

where use was made of LP = eν ⊗ ∂tϑ
ν . This means that the Mandel stress is work-

conjugate to −LP as well. In particular, −〈M,LP〉 represents the entropy production
�N given in (6.7). Moreover, as L − LP = F−1

P LEFP from (4.8), one can write the
rate of change of the elastic free energy as

� ∂tF = 〈M,L〉 − 〈M,LP〉 = 〈
M̃,LE

〉
,

where M̃ = FPMF−1
P is the Mandel stress brought to the “intermediate configura-

tion.” This is due to the fact that the only deformation that the free energy sees is the
elastic one. It should be noted that the tensor M̃ can be obtained by lowering with C�

E

one index of the pushforward of S via FP, i.e.,

〈M̃∗
ν, V 〉 = 〈〈FPS(ν), FPV 〉〉C�

E
,

cf. (5.7), and is sometimes defined as the primary variant of theMandel stress (Mandel
1971; Cleja-Tigoiu and Maugin 2000; Lubliner 2008). However, it should be noted
that while the tensor M is always work-conjugate to L, the conjugacy between M̃ and
LE, as well as the one between −M and LP, holds only under the assumption of an
elastic free energy.
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6.2 Dissipation

The dissipation potential D was introduced in Sect. 5.1 as a convex function of the
dislocation velocities. The drag force

a
τ on the motion of the a-th dislocation field

was obtained by differentiatingD with respect to
a

U as in (5.4). In this subsection, we
introduce some simplifications and provide explicit expressions for the function D .
The first ansatz is to assume that each dislocation field dissipates energy independently
from the others. Therefore, we consider the following additive decomposition:

D(
1

U, . . . ,
N
U) =

N∑

a=1

a

D(
a

U) , (6.8)

where each function
a

D depends only on the respective dislocation velocity—as well
as on the other internal variables that we omit for the sake of simplicity—so that
one obtains the dissipative force (5.4) associated with the material motion of the a-th
dislocation field as

a
τ = −ρ

∂
a

D

∂
a

U
. (6.9)

Nextwe assume that each function
a

D depends only on the component of the dislocation

velocity that is normal to the dislocation curves, i.e., such that
a

D = a

D(
a

U⊥), and that
it is convex in that argument, so that one obtains

a
τ = −ρ

∂
a

D

∂
a

U⊥
∂〈 a

N�,
a

U〉
∂

a

U
= −ρ

∂
a

D

∂
a

U⊥
a

N� = −ρ
a

D ′(
a

U⊥)
a

N� . (6.10)

Each scalar-valued dissipation potential
a

D can be assumed quadratic in
a

U and propor-

tional to the scalar dislocation density a
�, i.e.,

a

D = 1
2

a
�

a
co (

a

U⊥)2 for a constant drag

coefficient
a
co ≥ 0. Hence,

a
τ = −ρ

a
�

a
co

a

U⊥ a

N�. In this case, the energy dissipated
by the a-th dislocation field is

a
co (

a

U⊥)2. Moreover, it is reasonable to assume that
〈 a
τ ,

a
π�〉 = 0, i.e., that the dissipative forces do work only on dislocation displace-

ments in the glide plane, which clearly holds for (6.10). This also means that the
1-forms

a
τ and

a
π are linearly independent.

Viscous drag is not the only type of resistance that dislocations experience while
they move across a crystal. As a matter of fact, the motion of dislocations is only
allowed when sufficiently large forces act on them, i.e., when the resolved shear
stress reaches the value of the Peierls stress (Nabarro 1967). We propose a penalty
method that models this static friction via viscous resistance by incorporating it in
the dissipation potential, with the goal of avoiding the introduction of discontinuities
and singularities. It should be noted that the resolved shear stress defined as 〈 a

π , M
a

B〉
appears in the kinetic equations via the Peach–Koehler force, as was shown in (6.6).
However, the Peach–Koehler force is not the only force at play in the dynamics of
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dislocations, as there might be other effects such as microstress and non-conservative
forces considered in Sect. 5, or reaction forces coming from the lattice constraints,
see Sect. 5.4. Hence, in the present theory the resolved shear (Mandel) stress does
not fully determine whether the dislocation motion is allowed or not. For this reason,
we follow a strain-based approach, in the sense that the parameter that activates the
motion is based on a measure of strain rather than stress. The philosophy behind this
choice lies in the fact that the energy required by the dislocations to overcome the
potential barrier and move depends on the distances between lattice points (Nabarro
1997; Joos and Duesbery 1997), and hence on the elastic deformation. In particular,
we assume that this threshold mechanism is governed by a parameter

a
r denoting the

shear strain on the slip plane in the direction of the Burgers director, viz.

a
r = 〈〈 a

π�,
a

B〉〉C� = 〈 a
π ,C

a

B〉 = a
πμ Cα

μ

a

Bν .

It should be noted that in our geometric approach, the pulled-back metric expressed
in the lattice frame represents elastic strain, as shown in (6.2). The motion of the a-th
dislocation field is activated when

a
r ≥ ro(πν, Bν), for a smooth function ro of the

slip plane orientation and of the Burgers vector direction. Therefore, we introduce a
penalty function p(

a
r) with the properties: p(

a
r) � 1 for

a
r < s < ro(πν, Bν), and

p(
a
r) = 1 for

a
r > S > ro(πν, Bν), for s, S > 0. Based on the assumption (6.8), a

modified dissipation potential is defined as

D =
N∑

a=1

p(
a
r)

a

D(
a

U) ,

that models a static resistance by increasing the viscosity below the given threshold.
The drag force can be written as

a
τ = −ρ p(

a
r)

∂
a

D

∂
a

U
.

Remark 6.2 In phenomenological plasticity, non-Schmid effects are usually encoded
in a generalized stress measure that accounts for the resolved shear stress on other slip
systems (Qin and Bassani 1992; Soare 2014; Salahshoor et al. 2018). When this stress
measure exceeds a certain threshold, the slip system is activated. In our formulation,
such an approach would require to define penalty functions

a
p that depend on the

resolved strain associated with different dislocation fields, i.e.,
a
p(

1
r , . . . ,

N
r ).

6.3 Summary of the Governing Equations

In this section, we summarize the governing equations and formulate the initial
boundary-value problem (IBVP) in the absence of micro-inertial forces and other
nonlocal effects. We take into account all the assumptions introduced so far; we con-
sider closed dislocation fields obeying Orowan’s equation, an elastic free energy, and
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the presence of lattice constraints that enforce the dislocation fields to glide and remain
layered on the respective plane distributions. The initial state of the crystal is given
in terms of a lattice structure and of N dislocation fields defined on B. Loads and
boundary conditions at all times are considered as inputs as well. The goal is to show
how to use the governing equations derived so far in order to obtain the evolution of
both the internal and external variables. In particular, knowing the lattice structures
at time t allows one to obtain the geometry of the Riemannian manifold (B, Gt ), and
hence, to calculate the history of stress in the crystal during the plastic deformation
process using the methods of nonlinear anelasticity.

The state of the system at time t = 0 is defined by a lattice structure in terms of the
coframe {ϑν

0}, and by N closed decomposable dislocation fields
a
ην
0, each one layered

on the plane distribution
a

�0 described by a
πν . At time t = 0, the incompatibility of

the lattice forms must coincide with the sum of the dislocation fields as in (3.1), viz.

dϑν
0 =

N∑

a=1

a
ην
0 . (6.11)

Energy is provided to the system through time-dependent body forces b(x, t) and
tractions t(x, t), as well as through displacement boundary conditions ϕt on a subset
∂DB of the boundary ∂B of the crystal. It should be noted that contact forces are
assigned on ∂NB = ∂B \ ∂DB, while on ∂DB they are reaction forces (Lagrange
multipliers) associated with the displacement boundary conditions. We denote the
former with t and the latter with t.

As was mentioned earlier, for a given set of inputs—consisting of the initial internal
state, the prescribed loads and the boundary conditions—our goal is to find the time-
dependent configuration ϕt and the material motions a

χt throughout the time interval
of interest. One should note that during this interval, the material motions might not
be defined for all points in the body, as was discussed in Remark 4.2. Therefore, it
is convenient to express them in terms of their dislocation velocities

a

U , which are
always well defined. Along with the material and spatial motions, we want to find
the evolutions of the internal variables, i.e., the dislocation fields

a
ην(X , t) and lattice

formsϑν(X , t). These evolve according to the evolution equation (4.10) andOrowan’s
equation (4.18), which can be integrated to give

ϑν(X , t) = ϑν(X , 0) −
N∑

a=1

∫ t

0
ι a
U(X ,t)

a
ην(X , t) dt ,

a
ην(X , t) = a

ην(X , 0) −
∫ t

0
d(ι a

U(X ,t)

a
ην(X , t)) dt , a = 1, 2, . . . , N .

(6.12)

It should be noted that the evolution equations (6.12) with the initial condition (6.11)
guarantee that the incompatibility equation (3.1) is automatically satisfied at all times.
Decomposability and closedness of dislocation fields are preserved by (6.12) as well.
At time t ,

a
π ,

ab
� and I a

�
and

a

N can be expressed in terms of the a-th dislocation field
and of the lattice forms as was discussed in Sect. 3.3. The following layer and glide
constraints hold:
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a
π ∧ a

ω = 0 or ι a
U

ι a
B

a
ω = 0 , 〈 a

π ,
a

U〉 = 0 , a = 1, 2, . . . , N , (6.13)

together with the displacement boundary conditions ϕ|∂DB(X , t) = ϕ(X , t). Recall
that the constraint on the Burgers vector is redundant, as was discussed in Sect. 5.4. All
these unknowns, togetherwith theLagrangemultipliers

a

λL (X , t),
a

λG(X , t), and t(x, t)
associated with the constraints must satisfy the Euler–Lagrange equations associated
with the constrained action principle, i.e., the kinetic equations (6.5), and the balance
of linear momentum (5.8) with the associated boundary conditions (5.9), viz.

aP + a

λL
a
� I a

�

a

N� +
N∑

b=1

b

λL
ba
� + a

λG
a
π + a

τ = 0 , a = 1, 2, . . . , N , (6.14)

Div P + ρb = ρA� , P∗ν|∂NB = t , P∗ν|∂DB = t . (6.15)

In the case of weakly layered dislocation distributions, (6.14) reads

aP + a

λW ι a
B

a
ω + a

λG
a
π + a

τ = 0 , a = 1, 2, . . . , N .

On should note that the kinetic boundary conditions (5.25) are trivially satisfied as
in this simplified model we are not considering non-local effects. The first Piola–
Kirchhoff tensor P , the Mandel tensor M, the dissipation 1-forms

a
τ and the Peach–

Koehler force
aP defined in (5.6), (5.7), (6.9), and (6.4), respectively, and involved

in the previous equations, are derived from an elastic free energy function F and a
dissipation potential D . In components, one has

Pa
A = 2ρ gabF

b
B

∂F

∂CAB
, MA

B = 2ρ GBH
∂F

∂CAH
,

a
τA = ρ

∂D

∂
a

U A
,

aPA = MK
H BHωK A .

Remark 6.3 As was discussed in Sect. 4, given some initial conditions, the material
motions a

χ fully determine the internal variables via the evolution equations. As a
matter of fact, there are 9 + 9N evolution equations (6.12) associated with the same
number of unknown internal variables ϑν and

a
ην . In the case of uniform dislocation

fields—those with uniform and constant Burgers director—a dislocation field {a
ην}

is fully encoded in its dislocation 2-form
a
ω, and hence, the number of the internal

variables and the evolution equations is 9+3N . The 3+3N governing equations (6.14)
and (6.15) were obtained from a variational principle associated with variations of the
3 + 3N unknowns ϕ and a

χ . In addition to these, one has the 2N unknown Lagrange
multipliers

a

λL and
a

λG that are associated with the 2N constraint equations (6.13)2
(whether strong or weak) and (6.13)3. Hence, we have obtained 12 + 14N governing
equations—12+ 11N in the case of uniform dislocation fields—for the same number
of unknowns.
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7 Linearized Theory

In the previous section, a simplified nonlinear IBVP for dislocation dynamics was
formulated. The data for the problem consisted of the initial values for the internal
variables (the initial lattice forms ϑν(X , 0) and the initial dislocation fields

a
ην(X , 0)),

the external loads (the body and contact forcesb(x, t) and t(x, t)) and the displacement
boundary condition ϕ. In this section, we perturb these inputs and study the governing
equations and their solutions in the linear approximation. Similar to the notion of
variations, a time-dependent tensor field A(X , t) on B is perturbed around A(X , t)|o
by considering one-parameter families Aε(X , t) such that Aε=0(X , t) = A(X , t)|o,
i.e., the zeroth-order term. The n-th order term is defined as the n-th-order ε-derivative
evaluated at ε = 0. We indicate the first-order term with δA, the second-order term
with δ2A, and so on. Spatial quantities of the type f (X , t) = (f ◦ϕt )(X) are perturbed
as f ε(X , t) = (f ◦ ϕt,ε)(X). Then, f (X , t)|o = (f ◦ ϕt |o)(X), while for the higher-
order terms one must introduce a connection, as was discussed in Sect. 4.1 for the time
derivatives. We simply use the ambient space connection ∇ g ; the first-order term can
be written as δ f = ∇ g

δϕ(f ◦ ϕε)|ε=0.
Unlike what was done for the variations of the material dislocation motions, in the

linearization process all the initial dislocation fields are perturbed at the same time.
Moreover, since the lattice forms must satisfy (6.11), they are perturbed together with
the dislocation fields. Hence, all the initial internal variables are perturbed simultane-
ously, while the external loads are perturbed separately.

7.1 Linearization of Dislocation Fields

First we focus on the perturbation of the dislocation fields. Dislocation densities, and
hence the overall incompatible content of the plastic deformation, are considered small
compared to the inverse of a characteristic length Lo, i.e.,

a
� � 1/Lo. Therefore, we

perturb the initial dislocation fields
a
ην
0 around vanishing 2-forms. It should be noticed

that in order for (3.1) to hold for ε = 0, one must perturb the lattice structure around a
defect-free one. However, in Sect. 7.2 we will introduce a slight modification of (3.1)
that allows us to linearize around a distorted lattice while keeping the dislocation
densities small.

We look at the zeroth-order evolution equations, i.e., at (6.12) for ε = 0. As the
initial condition is

a
ην
0|o = 0, both ∂tϑ

ν |o and ∂t
a
ην |o vanish, and hence, a

ην |o vanishes
at all times (while ϑν |o remains constant). As for the first-order evolution equations,
since

a
ην |o = 0, one obtains

δϑν(X , t) = δϑν(X , 0) −
N∑

a=1

∫ t

0
ι a
U |o(X ,t)

δ
a
ην(X , t) dt ,

δ
a
ην(X , t) = δ

a
ην(X , 0) −

∫ t

0
dι a

U |o(X ,t)
δ
a
ην(X , t) dt , a = 1, 2, . . . , N .

(7.1)

The last equation implies that the linearized dislocation fields δ
a
ην are convected by

the zeroth-order dislocation velocities
a

U |o. We choose a decomposition ην = Bνω
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where the only part that depends on ε is the 2-form
a
ω, with

a
ω|o = 0. Clearly one has

δ
a
ην = a

Bν δ
a
ω. It should be emphasized that the Burgers director

a

B = a

Bνeν depends on
the lattice structure, and hence on ε. Thus, one obtains

a

B|o = a

Bνeν |o, δ
a

B = a

Bνδeν ,
and so on. The linearization of (3.4) reads

dδϑν =
N∑

a=1

a

Bνδ
a
ω .

Next we look at the consequences of the linearization of the dislocation fields on the
kinetic equations (6.14). First one should note that

a
ω|o = 0 implies vanishing Peach–

Koehler force
aP|o and the 1-forms

ab
� 0 at ε = 0. Hence, the zeroth-order kinetic

equation becomes

a

λG |o a
π |o + a

τ |o = 0 . (7.2)

As was discussed in Sect. 6.2,
a
τ and

a
π are linearly independent. Therefore, from (7.2)

one obtains
a

λG |o = 0, and
a
τ |o = 0.Note that if one assumes a dissipation potential that

is linear in the scalar dislocation densities (as in Sect. 6.2), then
a
τ |o = 0, which agrees

with what was just obtained from the zeroth-order kinetic equations. Instead,
a

U |o and
a

λL |o are unknowns and are to be determined using the rest of the first-order equations,
which require more information and will be considered in the next subsection.

At ε = 0, the layer constraint equation is automatically satisfied as ω|o = 0. The
glide constraint equation gives

〈 a
π |o,

a

U |o〉 = 0 , (7.3)

which means that the unknown dislocation velocities
a

U |o lie on the respective plane
distributions. At the first order, the layer constraint becomes

π |o ∧ δω = 0 , (7.4)

implying that the linearized dislocation fields are layered on the respective zeroth-order
plane distributions, while we are not interested in the linearized glide constraint. If one
replaces the layer constraint with the weaker condition ι a

U
ι a
B

a
ω = 0, it is automatically

satisfied at the zeroth order, while at the first order one has

ι a
U |o ι

a
B|oδ

a
ω = 0 . (7.5)

By doing so it is possible to take into account a broader class of dislocation fields by
allowing the dislocation curves to not be tangent to the glide planes.

With an abuse of notation, we define δ
a

L as the unit vector tangent to the dislocation
curves associated with δ

a
ω, and δ

a

N as the unit vector that lies on
a
π |o and that is normal

to the dislocation curves associated with δ
a
ω. Note that one has δ

a
� δ

a

L = ��|oδ a
ω, where
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��|o is the raised Hodge operator induced by G|o. From (7.4), similar to (3.7), one
obtains ι

δ
a
N
δ

a
ω = a

�
a
π |o, and ι

δ
a
N

ι
δ
a
L

μ|o = a
π |o.

7.2 Linearization of the Lattice Structure

First, we linearize the initial lattice structure ϑν
0 around a Cartesian coframe dZν =

d(zν ◦κ), obtained by pulling back some Cartesian coordinates zν in the ambient space
S via a reference map κ : B → S, as was shown in Sect. 2.38 The dislocation fields
are kept small as in Sect. 7.1. As was mentioned in Sect. 7.1, the lattice structure at
ε = 0 is time independent, and hence ϑν |o = dZν at all times. Therefore, one also
has T |o = 0 and α|o = 0, while the zeroth-order material metric is Euclidean and is
given by G|o = κ∗g. As for plane distributions, one has a

π |o = a
πνdZν , and hence,

d
a
π |o = 0. Thismeans that all plane distributions are integrable, i.e., I a

�
|o = 0 for all a;

in particular they define flat glide surfaces in (B, G|o). Considering the flat geometry
induced by G|o, since from (7.1) and (7.3) the first-order dislocation fields δ

a
ην glide

on a flat surface given by
a
π |o, the classical dislocation kinematics is valid (Sedláček

et al. 2003, 2007). Linearizing (3.5) around the undistorted lattice structure, one has

δT =
N∑

a=1

a

B|o ⊗ δ
a
ω , δαν =

N∑

a=1

δ
a
�

a

Bν δ
a

L , δα =
N∑

a=1

δ
a
�

a

B|o ⊗ δ
a

L .

Wederive the analogue of Lemma4.8 in the linear approximation around a dislocation-
free lattice, which establishes the sufficiency of the zeroth-order glide constraint (7.3)
for the first-order layer constraint (7.4). This also means that the glide of layered
dislocation fields is always allowed.

Lemma 7.1 In the case of an integrable plane distribution, the glide condition (7.3)
implies the linearized layer condition (7.4).

Proof We apply Lemma 4.8 to
a
ω,

a
π |o, and

a

U |o. Then, if 〈 a
π |o,

a

U |o〉 = 0, the first-order
expansion of (4.28) is a necessary and sufficient condition for

a
π |o ∧ δ

a
ω = 0. Note that

the zeroth-order expansion of (4.25) gives a
γ |o a

π |o = 0, whence a
γ |o = 0. Therefore,

as ∂t
a
π |o = 0, and I a

�
|o = 0, the first-order expansion of (4.28) is always satisfied.

Hence, assuming 〈 a
π |o,

a

U |o〉 = 0 one necessarily has
a
π |o ∧ δ

a
ω = 0. ��

Next we consider distributions of low densities of dislocations that are layered on
a lattice structure that is already dislocated.39 Hence, we linearize the lattice structure
around a θν such that dθν �= 0. As was mentioned earlier in this section, in order to
allow thiswe need to introduce a slightmodification to (3.1) and assume the following:

dϑν |o = dθν +
N∑

a=1

a
ην |o = dθν , (7.6)

38 In the case in which we linearize around a compatible but non-Cartesian dY ν , one can simply repa-
rameterize the material manifold to (z−1 ◦ Y )(B) ⊂ S, with respect to which the coordinates (Y ν) are
Cartesian.
39 See also Sadik and Yavari (2016), in which G is perturbed around a non-Euclidean metric.
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Table 3 For linearized dislocation densities, the defect content of the initial lattice structure can predict
the occurrence of dislocation motion. In the first row, layered dislocation fields are considered, while in the
second row we assume the weaker constraint. From Lemma 7.1 in the integrable case the glide constraint
implies that initially layered dislocation fields stay layered. Hence, in the defect-free case the glide motion
is on the glide surfaces. From Lemma 7.2, the strong layer constraint obstructs the glide motion, while in
the weaker case dislocations are allowed to leave the glide plane, as long as they move with a velocity that
is parallel to the Burgers director

Glide type Constraint reactions
Constraint Defect-free Dislocated Defect-free Dislocated

fL In plane × δ
a
λG

a
π |o a

λL |o δ
a
� Ia

�

∣∣
∣
o
δ
a
N� + δ

a
λG

a
π |o

fW In plane Out of plane δ
a
λG

a
π |o a

λW |o ιa
B|o

δ
a
ω + δ

a
λG

a
π |o

as all
a
ην |o vanish. By doing so, one is able to account for small dislocation densities

distributed in a lattice with a large dislocation content.40 As for plane distributions,
one has

a
π |o = a

πνθ
ν , and therefore, since dθν �= 0, integrability is not guaranteed.

Hence, I a
�

∣∣
o �= 0, in general. It should be noted that under the modification (7.6) the

condition (4.31) does not hold anymore. However, one can still rely on (4.28) or (4.30).
Therefore, one has the following analogue of Lemma 7.1.

Lemma 7.2 It is not possible to satisfy both the glide condition (7.3) and the linearized
layer condition (7.4) on a non-integrable plane distribution �|o.
Proof The proof is similar to that of Lemma 7.1 as we apply Lemma 4.8 to

a
ω,

a
π |o,

and
a

U |o. In this case, one still has a
γ |o = 0, and ∂t

a
π |o = 0, but the integrability object

does not vanish. Therefore, (4.28) is simplified to read

U |⊥o I a
�

|o δ
a

N� = 0 ,

where δ
a

N� was defined in Sect. 7.1, and indices are lowered using G|o. As I a
�

|o �= 0,

the right-hand side vanishes only for δ
a
γ = 0, i.e., for vanishing dislocation veloci-

ties (modulo vector fields that are tangent to the dislocation lines, as was discussed
in Sect. 4.3). ��

The previous result can be explained by noticing that in the linear approximation
dislocations are not dense enough to change a finitely distorted lattice in order to
accommodate their motion. In other words, linearized dislocations cannot glide on
highly distorted lattices. This also means that the lack of integrability of a plane
distribution anchors themotion of low dislocation densities, and the possibility of glide
on a non-integrable plane distribution discussed in Sect. 4.4 is a nonlinear effect.41

40 The high dislocation content may be associated with dislocation fields on different slip systems, as well
as with other defects such as disclinations and grain boundaries.
41 It is straightforward to see that satisfying the layer condition 〈π |o,U |o〉 = 0 at all times does not imply
the validity of the glide condition π |o ∧ δω = 0.
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Next we look at the first-order kinetic equations. From (6.4), one obtains the lin-
earized Peach–Koehler force as

δ
aP = ι

M|o
a
B|oδ

a
ω ,

where the linearized Mandel stress can be calculated starting from the linearized first
Piola–Kirchhoff stress asM|o = P |o F|o, with K = T κ = F|o being the tangentmap
of the zeroth-order configuration mapping. The tensor P |o appears in the zeroth-order
balance of linear momentum that reads

Div |oP |o + ρ|o β = 0 , P |�o ν|∂NB = τ , δP |�o ν|∂DB = τ ,

with the constraint ϕ|∂DB = ϕ. It should be noticed that the linearization is defined
with respect to a parameter related to the internal variables and not with respect to
the stiffness of the crystal, so nothing can be said about the magnitude of stresses
and strains, see Sect. 7.4. Moreover, from the proof of Lemma 7.2 one can calculate
the linearization of the second term in the kinetic equations (6.14), i.e., of lattice
reaction that depends on the integrability object associated with a plane distribution.
In particular, one has

δ
(

a

λL
a
� I a

�

a

N�
)

= a

λL |o δ
a
� I a

�

∣∣∣
o
δ

a

N� . (7.7)

This term represents the reaction force that prevents the motion of dislocations, as
prescribed by (7.2). It should be noticed that in the linearization around a defect-free
lattice, the dislocation motion is allowed because of Lemma (7.1), and hence, (7.7)
vanishes as I a

�

∣∣
o = 0. Since the 1-forms

ab
� are quadratic in the dislocation densities,

their linearizations vanish and so does the third term in the kinetic equations (6.14).
Recalling

a

λG |o = 0 from Sect. 7.1, the linearized kinetic equations (6.14) can now be
written as

δ
aP + a

λL |o δ
a
� I a

�

∣
∣∣
o
δ

a

N� + δ
a

λG
a
π |o + δ

a
τ = 0 . (7.8)

Equation (7.8) is the equation of motion of the dislocation fields in the linearized

theory. The term δ
aP is the driving force for the dislocation motion, whereas δ

a

λG
a
π |o

is the force that the lattice exerts on the dislocations in order to keep them gliding
and layered on the slip surface. In short, when the zeroth-order lattice structure is
dislocation-free, the motion is allowed and is driven by the linearized Peach–Koehler
force. The linearized dissipation force δ

a
τ has the following simplified expression

δ
a
τ = −ρ

∂2
a

D

∂
a

U∂
a
�

δ
a
� ,

that can be simplified further to read −ρ δ
a
�

a
co

a

U⊥δ
a

N� when
a

D = 1
2

a
�

a
co (

a

U⊥)2 as
in Sect. 6.2. It should be noted that by the effect of the Peierls stress barrier (that can
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Fig. 12 Glide of layered dislocation fields. Left: When the slip plane distribution is integrable, the glide
motion keeps the dislocations on the prescribed slip surface. Right: In the non-integrable case the glide
motion causes the dislocations to leave the slip plane

be embedded in the dissipative force δ
a
τ through a penalty function as was discussed

in Sect. 6.2) the glide motion is obstructed if the stresses—and hence the Peach–
Koehler force—are not large enough, see Table 3 and Sect. 7.4.

For weakly layered dislocation fields obeying (7.5), Lemma 7.2 does not hold,
and dislocations are now allowed to glide on non-integrable plane distributions by
leaving the slip plane. In the integrable case, since the glide constraint (7.3) implies
that an initially layered dislocation field stays layered (Lemma 7.1), the only way
to go out of the glide plane is by the effect of the non-integrability of the plane
distribution itself, as shown in Fig. 12. Linearizing the modified constrained Euler–
Lagrange equations (5.36), Eq. (7.8) must be modified to read

δ
aP + a

λW |o ι a
B|oδ

a
ω + δ

a

λG
a
π |o + δ

a
τ = 0 . (7.9)

It shouldbenoticed that the reaction force
a

λW |o ι a
B|oδ

a
ω vanishes for screwdislocations,

as both
a

B|o and δ
a

L belong to
a

�|o. In the integrable case, one of the two reaction forces
in (7.9) is redundant as they act perpendicular to the same plane. Instead, when I a

�
�= 0

it acts in such away to keep the dislocation velocity
a

U |o parallel to the Burgers director
a

B|o, together with the reaction force δ
a

λG
a
π |o, see also Table 3.

7.3 Examples of Linearized Glide

As was mentioned earlier, the linear approximation allows one to consider the motion
of dislocations on a time-independent lattice structure. We consider the kinematics of
a linearized dislocation field δην in a distorted lattice structure defined by the triplet
{θν}, with dθν �= 0. By the effect of the pre-existing dislocations, the slip plane
distribution �|o assigned to δην is non-integrable. Hence, glide can only occur by
relaxing the strong layer condition, i.e., by allowing the dislocation curves to leave the
slip plane while satisfying (7.5). This implies that the dislocation velocityU |o is in the
direction of the Burgers director. We also assume that the dislocation velocity is time
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Fig. 13 Time evolution of a field of edge dislocations over a distorted lattice structure. Top: H = 3/4, the
dislocation velocity reverses outside the cube Q = [0, L]3 at Y = 4/3. Bottom: H = 4/3, the dislocation
velocity reverses inside the cube Q at Y = 3/4. Left: The solution to the equation of motion for the
linearized dislocation fields is represented by points (χ(Y , t), t) for different initial positions Y . Center:
Scalar dislocation density along Y at different times for K = 0. Right: Scalar dislocation density along Y
at different times for K = 2

independent—and hence induces an autonomous material flow—but is non-uniform.
Setting Cartesian coordinates (X ,Y , Z), we consider the cube Q = [0, L]3, with the
goal of studying the effects of both the non-integrability of�|o and the non-uniformity
ofU |o on the induced linearized plastic slip δϑν .We consider an initial lattice structure
given by

θ1 = dX , θ2 = dY , θ3 = KY dX + dZ . (7.10)

The material metric induced by (7.10) is non-Euclidean, with the associated material
volume form μ|o = dZ1 ∧ dY ∧ dZ3. The fact that the material volume form is the
same as the Cartesian volume form dZ1 ∧ dY ∧ dZ3 indicates that (7.10) represents a
simple shear. Since dθ3 = −K dX ∧ dY , the initial lattice structure is associated with
a dislocation content, that can be achieved by the dislocation form K dX ∧ dY with
Burgers director −e3 = − ∂

∂Z . From (3.5)3, the initial dislocation content can also be
expressed as α|o = −e3 ⊗ K ∂

∂Z = −K ∂
∂Z ⊗ ∂

∂Z , implying that (7.10) is equivalent
to a field of uniformly distributed screw dislocations oriented along the Z -axis.
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Next we consider the slip plane distribution �|o defined by π |o = θ3, and a
linearized dislocation field δην = Bνδω associated with it. We assume uniform and
constant Bν = {0,−1, 0}, i.e., B|o = −e2 = − ∂

∂Y . Note that the plane distribution
�|o is non-integrable, as I�|o = 〈θ3⊗θ3,α|o〉 = −K . We look at the weakly layered
glide of δω on �|o, meaning that it occurs along the Burgers director. By the effect of
both the distorted lattice and the external loads, the crystal is subject to a non-vanishing
zeroth-order Mandel stress field M|o that we assume drives the motion of δην along a
time-independent dislocation velocity of the type U |o = U |o(Y ) ∂

∂Y . In particular, we
take a linear function, viz.

U |o = u (1 − HY ) ∂
∂Y , (7.11)

where u and H are two constants. More specifically, 1/H is the position on the Y -axis
at which the dislocation velocity changes sign. When H < 0 or 1/H < L the velocity
reverses outsideQ, while for 1/H < L that occurs insideQ, see Fig. 13.With an abuse
of notation, we denote with χ the component representation of the material motion
along Y . Hence, for a fixed Y ∈ [0, L], from (7.11) the material motion satisfies the
following ODE:

dχ

dt
= u (1 − Hχ) , (7.12)

with the initial condition χ(Y , 0) = 0. Equation (7.12) admits the following solution:

χ(Y , t) = e−uHt

H

(
HY + euHt − 1

)
.

Next we look at the evolution of the dislocation form δω. We take the initial
condition δω(Y , 0) = F[dY ∧ dZ − KY dX ∧ dY ], where the constant F is a
reciprocal length representing a characteristic dislocation density. It is straightfor-
ward to prove that δω(Y , 0) is strongly layered on �|o. This means that we start
with some distributed dislocations that are strongly layered and look at them leave
the slip plane as a consequence of glide on a non-integrable slip distribution. Since
the initial lattice structure, the dislocation velocity, and the initial dislocation field
depend only on Y , we consider solutions of the evolution equation (7.1) of the type
δω = a(Y , t) dY ∧ dZ + b(Y , t) dX ∧ dY . Therefore, recalling the calculations given
in Example 4.10, one obtains the following system of PDEs for a(Y , t) and b(Y , t):

∂a

∂t
+ ∂(U |o a)

∂Y
= 0 ,

∂b

∂t
+ ∂(U |o b)

∂Y
= 0 , (7.13)

where U |o(Y ) has the expression given in (7.11). Together with the initial condi-
tion, (7.13) admits the following solution:

δω(Y , t) = FeuHt
[
dY ∧ dZ − K

H
euHt

(
1 − euHt (1 − HY )

)
dX ∧ dY

]
. (7.14)

123



   83 Page 68 of 83 Journal of Nonlinear Science            (2023) 33:83 

Fig. 14 Plastic displacement in the 2-direction (the Y direction), representing the plastic shear of the
cubeQ = [0, L]3. Since δϑ2 is incompatible, these displacements are path dependent. Each plot shows the
displacements obtained by following two opposite sequences of paths, their average and their difference (the
Burgers vector associated with the loops obtained by joining opposite paths). Displacements are normalized
with respect to L and expressed in percentage, e.g., 100�−

X /L%. In (a, b) H = 3
4 , while in (c, d) H = 4

3 .
In (a, c), the shear deformations of the type Y -X are shown, while in (b, d) those of the type Y -Z are shown.
In all the plots K = 2. When K = 0 all quantities in (a, c) vanish, while (b, d) are not affected by K

It is straightforward to show that 〈〈δL, B|o〉〉G = 0, and hence, (7.14) represents a field
of edge dislocations with respect to the metric G. Note that the left-hand side of (7.4)
reads

δω ∧ π |o = FK

H
euHt (euHt − 1)(1 − HY )μ|o .

Therefore, for K = 0 (integrable �|o) the strong layer condition is always satisfied.
For H → 0 (uniform U |o(Y ) ≡ u), one obtains δω ∧ π |o → FKut μ|o, showing
that in the non-integrable case the dislocation curves leave the slip plane regardless of
the uniformity of the dislocation velocity. From (7.14), it is possible to calculate the
scalar dislocation density as δ� = ‖ ��|oδω ‖G|o , viz.

δ�(Y , t) = F

H
euHt

√
K 2
(
euHt − 1

)2
(1 − HY )2 + H2 ,

which we show in Fig. 13. The fact that an initially uniform scalar dislocation density
becomes non-uniform is due to the combined effects of the non-uniform velocity and
of the non-integrable slip plane distribution, as both H and K must be non-vanishing
in order for δ� to be Y -dependent.

Lastly, we look at the linearized plastic slip induced by the motion of δω. The
first-order Orowan’s equation gives

∂tδϑ
2 = FueuHt (1 − HY )

[
− K

H

(
1 − euHt (1 − HY )

)
dX + dZ

]
,
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while ∂tδϑ
1 = ∂tδϑ

3 = 0. The rate of change of the lattice forms can be integrated
with respect to time to give δϑν , ν = 1, 2, 3. These can be written in terms of the
linearized plastic deformation gradient δFP, viz.

δFP =
⎡

⎢
⎣

1 0 0
FK

(
euHt−1

)
(1−HY )

[
2H−(euHt−1

)
(1−HY )

]

2H2 1
F(1−HY )

(
euHt−1

)

H
0 0 1

⎤

⎥
⎦ , (7.15)

where the initial condition δFP(t = 0) = I was assumed. Taking the exterior deriva-
tive of the second row of (7.15), one obtains

dδϑ2 = F(euHt − 1)

[
−dY ∧ dZ + K

H

(
HY − euHt (1 − HY )

)
dX ∧ dY

]
,

from which it can be concluded that the plastic deformation is incompatible. It should
be noticed that the incompatibility of the linearized plastic deformation is due to the
non-uniformity of the dislocation velocity rather than the non-integrability of the slip
plane distribution, although it plays a role. As a matter of fact, one has dδϑ2 → 0 for
H → 0, while for K = 0 one has dδϑ2 = −F(euHt −1) dY ∧dZ . As a consequence
of this incompatibility, there exists no unique plastic displacement associated with
the plastic deformation (7.15). For this reason, we define the following quantities
representing the shear deformations of the cube Q:

�−
X (t) =

∫ L

0
δϑ2

X (0, t) dX +
∫ L

0
δϑ2

Y (Y , t) dY ,

�+
X (t) =

∫ L

0
δϑ2

Y (Y , t) dY +
∫ L

0
δϑ2

X (L, t) dX ,

�−
Z (t) =

∫ L

0
δϑ2

Z (0, t) dX +
∫ L

0
δϑ2

Y (Y , t) dY ,

�+
Z (t) =

∫ L

0
δϑ2

Y (Y , t) dY +
∫ L

0
δϑ2

Z (L, t) dX .

�−
X and �+

X are displacements corresponding to shear deformations of the type Y -X ,
and obtained by moving in the plane X -Y following opposite sequences, as shown
in Fig. 14. Similarly, �−

Z and �+
Z correspond to shear deformations of the type Y -Z ,

obtained by moving in the plane Y -Z following opposite sequences. Moreover, we
define the differences

BX = �+
X − �−

X , BZ = �−
Z − �+

Z ,

representing the Burgers vector associated with the loops obtained by joining the
opposite paths. Figure 14 shows the dependence of all these quantities on time, K and
H .
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7.4 Linearization of the External Loads

Next we consider perturbations of the external loads and boundary conditions. It
should be emphasized that unlike what was done for the internal variables in Sects. 7.1
and 7.2, this perturbation parameter is different from the one that was introduced
for the internal variables. As a matter of fact, external loads are considered small
compared to a measure of stiffness, such as any elastic modulus Eo, regardless of
the initial internal state. In particular, we are assuming that the tractions are small
compared to Eo, while the body forces are small compared to Eo/Lo, where Lo

is a characteristic length. As for the displacement boundary condition, one assumes
that ϕ is close to κ|∂DB (the reference configuration restricted to the displacement
boundary) if compared to Lo. These assumptions imply small stresses compared to
E0, and hence small elastic deformations. However, displacements might be large by
the effect of stress-free plastic deformations, i.e., those inducing a Euclidean material
metric, see Remark 2.3. It should be noticed that since the perturbations of the internal
and external variables are independent, the linearized kinetic and evolution equations
can be coupled with the balance of linear momentum considered at both the zeroth and
the first order, depending on the ratio between the Peierls stress and Eo (Kamimura
et al. 2018). Recalling the definition of ro(πν, Bν) given in Sect. 6.2 to account for
the Peierls barrier through the dissipation potential, if a crystal has ro � 1, then the
motion of dislocations is unlocked, while the solid is still in the linear elastic regime
(small displacements if one assumes zero initial plastic deformation). Conversely, if
ro ∼ 1, the motion of dislocations is unlocked after the solid has entered the nonlinear
elastic regime.

We denote the load parameter with ε̃, while the zeroth- and first-order expansions
with respect to it are denoted with |̃o and δ̃. We linearize the displacement boundary
condition around ϕ|õ = κ|∂DB, while the external forces are linearized around van-
ishing b|̃o and t|̃o at all times t . It should be noticed that keeping the non-Euclidean
part of the plastic deformations small is a necessary condition for small elastic defor-
mations. However, as was mentioned earlier, one can allow large plastic deformations
that induce a Euclidean material metric. Under these assumptions, the configuration
at order zero is simply the reference configuration κ at all times, which implies that
P |̃o = 0 and M |̃o = 0, whence the validity of the zeroth-order balance of linear
momentum. The first-order balance of linear momentum reads

Div |̃o δ̃P + ρ |̃o δ̃b = ρ |̃o δϕ̈ , δ̃P∗ν|∂NB = δ̃ t , δ̃P∗ν|∂DB = δ̃ t ,

constrained by the displacement boundary condition δ̃ϕ|∂DB = 0. Recalling the rela-
tion M = PF given in Sect. 5.2, the linearized Mandel stress can be obtained from
the linearized first Piola–Kirchhoff stress as δ̃M = δ̃P K , with K = T κ = F |̃o
being the tangent map of the reference configuration. Since the initial internal vari-
ables and the external loads are perturbed by different parameters, one can ε̃-linearize
the ε-linearized equations (and vice versa) without changing their structure (although,
technically, one obtains second-order equations). In particular, the two-time linearized
Peach–Koehler force depends on δ̃M|o, i.e., the Mandel stress of order zero with
respect to ε and of order one with respect to ε̃.
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8 Conclusions

In this paper, we formulated a geometric theory of dislocation mechanics and finite
plasticity in single crystals. This may be considered a mesoscale theory, in which
dislocations are single-valued smooth fields inducing the defect content of a lattice
in a deterministic way. In particular, dislocation fields were defined as N triplets of
differential 2-forms

a
ην related to the lattice 1-forms ϑν through (3.1). Both the lattice

and the dislocation forms constitute the internal variables of the theory. Inside the
lattice, dislocation fields are only allowed to move and migrate through the boundary
of the crystal, which is the only source and sink of dislocations.

Decomposable dislocation fields were defined as those that can be written as the
product of a Burgers director and a 2-form that carries the information about the
dislocation curves. Each decomposable dislocation field is assumed to be convected by
amaterial dislocationmotion in the crystal.We saw that this induces a class of evolution
equations for the lattice forms. An example is Orowan’s equation (4.18), which holds
under the assumption of closed decomposable dislocation fields. This implies that at
any time the 3 + 3N internal variables

a
ην and ϑν are completely determined by the

history of the N material motions a
χ (or of the material velocities

a

U) with assigned
initial conditions. Hence, the configuration mapping ϕ and the material motions a

χ

(or the material velocities
a

U) constitute the kinematical degrees of freedom of the
system. Starting from a variational principle of the Lagrange–d’Alembert type based
on a two-potential approach, we derived the kinetic equations (5.34) as the Euler–
Lagrange equations associated with variations of the material motions. In the setting
of a simplified model, an expression for the Peach–Koehler force in the nonlinear
setting was derived by assuming a hyperelastic free energy, and a penalty approach
was proposed to include the effect of the Peierls stress in the dissipation potential.

We defined layered decomposable dislocation fields as those whose Burgers and
line directors locally lie on a plane distribution. Note that a plane distribution

a

� may
not be integrable, i.e., surfaces that are tangent to it may not exist. We showed that
this property is encoded in what we called the integrability object I a

�
, which carries

information on the total dislocation content. Lemma 3.5 states that the integrability of
a plane distribution is controlled only by those decomposable dislocation fields whose
Burgers director densities do not belong to the plane distribution. Moreover, we saw
that each decomposable dislocation field participates in the integrability of a plane dis-
tribution proportionally to the normal component of the Burgers director with respect
to the plane distribution. Hence, layered decomposable dislocation fields do not affect
the integrability of the plane distribution they are layered on. Then, we assumed that
layered decomposable dislocation fields can only glide on the plane distribution they
are layered on. Using the geometric framework, we studied how the lack of integra-
bility of a plane distribution affects the glide motion. According to Lemma 4.8, the
glide condition does not imply that a dislocation field remains layered, as the con-
dition (4.28) is also needed. This equation involves the integrability object I a

�
and

prescribes how the lattice structure must evolve in order to accommodate the glide of
dislocations on a non-integrable slip plane distribution. In order to force the decom-
posable dislocation fields to be layered and to glide on a prescribed plane distribution,
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we introduced some internal lattice constraints. The Lagrange multipliers associated
with these constraints represent the lattice forces that keep the gliding dislocations
layered on the respective plane distribution. The reason that constraints are necessary,
and it is not possible to formulate the dynamics of each layered decomposable dislo-
cation field directly on its glide surface, is due to the fact that in the nonlinear setting
the lattice structure evolves in time. Moreover, as a consequence of Lemma 4.8, in the
nonlinear setting the layer and the glide conditions are distinct. The introduction of
these constraints generates new terms in the kinetic equation (5.34), and they represent
the reaction forces exerted by the lattice on dislocation fields. In particular, for the a-th
equation we obtained two terms that come from the layer condition and depend on the
integrability of the a-th plane distribution, as well as on the other slip systems (hence
representing a non-Schmid effect), plus a reaction force normal to the a-th plane dis-
tribution coming from the glide condition. We also considered a weak version of the
layer constraint and obtained the corresponding kinetic equations (5.36). By doing
so, we allowed the dislocation fields to leave the prescribed slip plane as long as the
motion remains conservative.

We derived a linear theory under the assumption of small dislocation densities.
We perturbed the initial lattice structure and studied its influence on the governing
equations in the linearized setting. In particular, Lemma 7.1 shows that if the slip plane
distribution is integrable, then the glide condition implies the layer condition. This
means that the glide motion is always allowed (at least for large enough values of the
Peach–Koehler force) and that the reaction forces associated with the lattice constraint
do not appear in the linearized kinetic equations (7.8).When the slip plane distribution
is non-integrable, according to Lemma 7.2 the layer and the glide conditions cannot
be satisfied simultaneously. Therefore, glide is only allowed in the case of weakly
layered dislocation fields, for which we derived the linearized kinetic equations (7.9).
The derivation of the linearized theory also allowed us to identify the purely nonlinear
effects, such as the interaction between different slip planes by the effect of the layer
constraint, which is a second-order force.

The following are a few directions for future research. Exploring the existence of
solutions, their regularity and stability will be crucial for numerical implementations
of this geometric formulation. Another extension of the present theory is to consider
the potential effects of distributed sources of dislocations such as Frank–Read sources,
and the possibility of changes in the topology of the dislocation curves. One should
also extend the model to include different types of dislocation interactions, such as
annihilation and cross-slip, as well as interactions with other defects, such as vacancies
and grain boundaries. It would also be interesting to consider the thermal effects and
their influence on climb. Another potential extension of the present theory is to develop
a geometric formulation for statistical dislocation dynamics in the nonlinear setting.
The present work is a good starting point for formulating such a theory, although it
would require a change of perspective; instead of considering the superposition of
N dislocation fields, one would need to look at random collections of dislocations—
potentially infinitely many—with an assigned probability distribution.
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Appendix A Differential Forms

The following facts about differential forms can be found in (Spivak 1970) and (Mars-
den andHughes 1983).We consider an n-dimensionalmanifoldB. The interior product
(or contraction) between a differential k-form ω and a vector field V is denoted ιVω,
and the exterior derivative of a differential k-form ω is a (k + 1) form that is denoted
dω. In the case of a 1-form γ , the following identities hold for all vector fields V and
W:

ιVγ = 〈γ , V 〉 , dγ (V ,W) = 〈d〈γ ,W〉, V 〉 − 〈d〈γ , V 〉,W〉 − 〈γ , [V ,W ]〉 , (A.1)

where the Lie bracket is defined as [V ,W ] = VW − WV .
Both the interior product and the exterior derivative satisfy the following properties

for all differential forms ω1 and ω2, and vector fields V :

ιV (ω1 ∧ ω2) = ιVω1 ∧ ω2 + (−1)degω1 ω1 ∧ ιVω2 , (A.2)

d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)degω1 ω1 ∧ dω2 , (A.3)

where deg gives the degree of a form. In particular, given a scalar field f and a
differential form ω, one has d( f ω) = df ∧ω+ (−1)degω f dω. Given a vector field V ,
Cartan’s formula relates the Lie derivativeLV , the interior product ιV , and the exterior
derivative d of a differential form ω as

LVω = dιVω + ιVdω . (A.4)

Given a metric tensor G on B, the Hodge operator assigns to a k-form ω the (n − k)-
form �ω such that

(�ω)(V 1, . . . , V k) = ω(V k+1, . . . , V n) , (A.5)

for any G-orthonormal frame {V 1, . . . , V n}. Note that ��ω = (−1)k(n−k)ω. In par-
ticular, for the volume n-form μ associated with the metric G one has �μ = 1.

The raised Hodge operator is defined by raising all the indices of the Hodge star
operator, i.e., ��ω = (�ω)�. The result is an alternating contravariant tensor. For any
k-form ω1 and any (n − k)-form ω2, the following identities hold:

ω1 ∧ ω2 = 〈ω1, �
�ω2〉μ = 〈ω2, �

�ω1〉μ , (A.6)

where the pairing 〈, 〉 of forms with alternating multivectors is defined by tensor
contraction of increasing ordered indices.42 In particular, the raised Hodge operator

42 Instead of summing on only those permutations with increasingly ordered indices, one can take into
account all the index permutations, so that the pairing form-multivector becomes a simple contraction of
tensors. In this case, the factors 1

(degω)! = 1
k! = 1

k! and
1

(degω)! = 1
(n−k)! = 1

(n−k)! show up in the second
and third terms of (A.6), respectively.
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of an (n − 1)-form ω gives a vector ��ω such that

ω = ι��ω μ , (A.7)

where μ is the volume form associated with the metric tensor G. By virtue of (A.6),
the exterior product between a 1-form γ and a 2-formω is the contraction 〈γ , ��ω〉. (In
vector calculus, this becomes a scalar product.) Also, from (A.7) the interior product
between a vector V and a 2-form ω works as a cross product, i.e., ιVω = μ(��ω, V ).

A k-form ω on B is closed if dω = 0, and is exact if there exists a (k − 1)-
form χ such that ω = dχ . An exact k-form is necessarily closed, while the converse
holds only when the k-th de Rham cohomology group is trivial. Since closedness
can be seen as the local version of exactness, holonomicity becomes quite clear: The
existence of local coordinates (Y ν) such that ϑν = dY ν is guaranteed whenever the
lattice forms are closed. It should be noticed from (A.1) that the exterior derivative
of a differential 1-form is written similarly to a curl in Cartesian coordinates, i.e.,
(dγ )AB = γB,A − γA,B . More precisely, in the geometric setting the curl of a vector
field V is defined as Curl V = ��d(V �). For this reason, a closed (exact) differential
1-form is the analogue of an irrotational (conservative) vector field, while an exact
2-form can be thought as the curl of a vector potential field.

Given a volume formμ, the divergence of a vector field V is defined as (Div V )μ =
LVμ, and by Cartan’s formula (Div V )μ = dιVμ. From (A.7), the exterior derivative
of a 2-form ω can be expressed using the Hodge operator as:43

dω = Div(��ω)μ . (A.8)

A vector field V is said to be solenoidal if Div V = 0. Note that if μ is induced
from G and ∇ is the Levi-Civita connection associated with G, then Div V = tr∇V .
Furthermore, from (A.8), we conclude that the exterior derivative of a differential
2-form is analogous to the divergence of its axial vector. This implies that a closed
2-form can be thought of as a solenoidal vector field.

Let j : N → B be a surface in (B, G). Let us denote with ν the associated G-
normal 1-form, i.e., a fieldN → T ∗B such that i) 〈ν, j∗Y 〉 = 0 for any Y ∈ TN , and
ii) ‖ν�‖ = 1. Then, �ν is a 2-form. We set ς = j∗�ν, which can be proved to be the
area form onN associated with the metric j∗G inherited from B. Then, the inclusion
map satisfies the following identity

j∗(ιVμ) = 〈ν, V 〉 ς , (A.9)

for all V ∈ TB. For a 2-form ω, one has j∗ω = j∗(ι��ωμ) = 〈ν, ��ω〉 ς , i.e.,
the inclusion pullback filters out 2-forms whose raised Hodge transformations are
tangent to the surface. In the geometric framework, integrals on an n-manifold are
associated with n-forms, and hence, volume integrals require a 3-form, while surface
integrals such as boundary integrals are associated with 2-forms. Stokes’ theorem and

43 If the connection is induced from the same metric that induces μ, the component form of this identity

is (dω)ABC = ∇I

(
μI J KωJ K

)
μABC .
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its metric-dependent variant using (A.9)—the divergence theorem—are, respectively,
written as

∫

B
dω =

∫

∂B
j∗ω ,

∫

B
(Div V )μ =

∫

∂B
〈ν, V 〉 ς . (A.10)

Appendix B Distributions

Given a differentiable manifold B, a smooth collection �(k) of k-dimensional sub-
spaces �

(k)
X of TXB, X ∈ B, is called a k-dimensional distribution (Spivak 1970;

Bryant et al. 2013). A k-dimensional distribution is integrable if there exists a family
of k-dimensional submanifolds (constituting a foliation) that are tangent to the distri-
bution, i.e., given an integral submanifold i : S ↪→ B, one has i∗(TXS) = �

(k)
X . Note

that the integrability of a distribution is a local property. A k-dimensional distribution
is involutive if for any two vector fields V ,W ∈ �(k) one has [V ,W ] ∈ �(k). The
Frobenius theorem establishes the equivalence between integrability and involutivity.
(Or simply the sufficiency of involutivity as necessity is trivial.)

The Frobenius theorem can also be formulated in terms of differential forms. We
denote with I�(k) the set of forms that vanish when they are paired with vectors in
�(k), constituting an ideal. Then,�(k) is integrable if and only ifI�(k) is closed under
exterior differentiation. Consider the n − k 1-forms {γ J }J=1,2,...,N−k that generate
I�(k). The ideal I�(k) is closed under exterior differentiation if and only if there
exist (n − k)2 1-forms β J

K (not necessarily in I�(k)) such that

dγ J =
∑

K

β J
K ∧ γ K , J = 1, 2, . . . , N − k .

Equivalently, one can require

dγ J ∧ γ 1 ∧ . . . ∧ γ n−k = 0 , J = 1, 2, . . . , N − k . (B.1)

The fact that a 1-distribution is always integrable follows trivially from (B.1). In other
words, given a vector field onB, one can always find a parameterization that guarantees
the existence of integral curves.

Next we consider the case n = 3, k = 2. The distribution of planes �(2) can be
defined by a 1-form π that vanishes on �(2). Then, from (B.1) �(2) is integrable if
and only if dπ ∧ π = 0. Note that �(2) can be expressed by any 1-form π̃ = f π ,
where f is a non-vanishing scalar field. As a matter of fact, the integrability condition
for π is the same as that for π̃ , because

d( f π) ∧ ( f π) = f d f ∧ π ∧ π + f 2dπ ∧ π = 0 .

The integrability of �(2) implies the existence of a 2-dimensional foliation of B. This
allows one to define foliation coordinates (Y 1,Y 2, h) such that the leaves are the level
surfaces of h. Moreover, dh = f π for some scalar field f .
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Appendix C Flows

We look at a smooth map χ : B × R → B, with χ(X , 0) = X . Its generator is
the vector field U(X , t) defined as the velocity of the trajectories t �→ χ(X , t), with
componentsU A = ∂χ A/∂t .We refer to the variable t as time. Fixing t , we denotewith
χt the diffeomorphism X �→ χ(X , t). We also set χ t

s = χs ◦ χ−1
t : χt (B) → χs(B),

so that χs = χ t
s ◦ χt , and of course χ s

s = idB.
The non-autonomous Lie derivative of a time-dependent tensor field is defined as

LU t At = ∂s
[(

χ t
s

)∗ As
] ∣∣∣

s=t
.

The autonomous Lie derivative of a time-dependent tensor field A along U is defined
as

LU t At = ∂s
[(

χ t
s

)∗ At
] ∣∣∣

s=t
.

Invoking the chain rule, one obtains

LU t At = ∂t At + LU t At .

A time-dependent field A(X , t) is said to be convected by the flow χ if one has At =
χt∗A0, or As = (χ t

s )∗ At for any s, t . Clearly, the non-autonomous Lie derivative of
a convected field vanishes, as ∂s

[(
χ t
s

)∗ As
] = ∂s At = 0. Therefore, one has

∂t At = −LU t At . (C.1)

In addition to the Lie derivative, a similar operation, called the Truesdell derivative,
is defined. It relies on the definition of volume form μ that for now we assume to be
time-independent. Then, we define the scalar field J st as (χ t

s )
∗μ = J tsμ expressing

the change of volume associated with the flow. Trivially, J tt = 1. Moreover,

∂s J
t
s

∣∣
∣
s=t

= DivU t . (C.2)

The Truesdell derivative of a time-dependent tensor At is defined as

TU t At = ∂s
[
J ts (χ t

s )
∗At

] ∣∣∣
s=t

.

From (C.2), one obtains the following expression for the Truesdell derivative:

TU A = LU A + (DivU)A .

As for the Lie derivative, one defines the non-autonomous Truesdell derivative as

TU t At = ∂s
[
J ts (χ t

s )
∗As

] ∣∣
∣
s=t

, (C.3)
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for which one has

TU A = LU A + (DivU)A .

The Truesdell derivatives can also be defined as TU A ⊗ μ = LU (A ⊗ μ), and
TU A ⊗ μ = LU (A ⊗ μ), as in Marsden and Hughes (1983).

Appendix D The Euler–Lagrange Equations Corresponding to the
Material Variations

In this appendix, we obtain the Euler–Lagrange equations from the Lagrange–
d’Alembert principle (5.20), viz.

∫ t2

t1

∫

B

{
− 〈δϑν,Y ν

〉
μ − a

ξ ν ∧ δ
a
ην +

〈 a

ψ, δ
a

U
〉
μ + 〈 a

τ , δ
a
χ〉μ

}
dt = 0 . (D.1)

Similar to what is done for spatial variations, the integral (D.1) can be written as
a local functional of δ

a
χ , which allows one to use the fundamental lemma of the

calculus of variations and obtain the Euler–Lagrange equations. First, we look at
the term 〈δϑν,Y ν〉 coming from the explicit dependence of the free energy on the
lattice coframe. We assume the hypotheses of Lemma 5.3: The dislocation fields
obey Orowan’s equation, and the variation of their motions is coplanar with both the
dislocation curves and the dislocation velocities. Under these premises, one can write
the variation of the energy due to changes of the lattice frame by invoking (5.16) as

〈
δϑν,Y ν

〉 = −
〈
Y ν, ιδ

a
χ

a
ην
〉
= 〈

ιYν

a
ην, δ

a
χ
〉
, (D.2)

where we used the identity 〈ιXν,Y 〉 = − 〈ιYν, X〉 for all 2-forms ν and vectors X,Y .
Next, we consider the second term in (D.1), coming from the explicit dependence
of the free energy on the distribution of dislocations in the crystal. From (5.15), the
second integrand in (D.1) reads

a

ξ ν ∧ δ
a
ην = −a

ξ ν ∧ L
δ
a
χ

a
ην = −a

ξ ν ∧ dι
δ
a
χ

a
ην ,

as the dislocation fields are closed. Note that both the Lie derivative along δ
a
χ and the

exterior derivative are nonlocal functionals of δ
a
χ . We use Stokes’ theorem (A.10) in

order to obtain a local expression. Invoking (A.3), and recalling that ξ ν is a 1-form for
ν = 1, 2, 3, one obtains

−a

ξ ν ∧ dι
δ
a
χ

a
ην = d(

a

ξ ν ∧ ι
δ
a
χ

a
ην) − d

a

ξ ν ∧ ι
δ
a
χ

a
ην .
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The 3-form in the last term can be written as a 1-form acting on δ
a
χ times the volume

form μ by using the raised Hodge operator (A.6), viz.

−d
a

ξ ν ∧ ι
δ
a
χ

a
ην = −〈ι

δ
a
χ

a
ην, ��d

a

ξ ν〉μ = 〈ι
��d

a
ξν

a
ην, δ

a
χ〉μ .

Then, one can use Stokes’ theorem to write the second term of (D.1) as

∫

B
a

ξ ν ∧ δ
a
ην =

∫

∂B
j∗
(a

ξ ν ∧ ι
δ
a
χ

a
ην
)

+
∫

B

〈
ι
��d

a
ξν

a
ην, δ

a
χ

〉
μ , (D.3)

where j is the inclusion map ∂B ↪→ B. Lastly, we look at the third term in (D.1),
coming from the micro-kinetic energy. From (5.11), one has

〈 a

ψ, δ
a

U
〉
=
〈 a

ψ, ∂tδ
a
χ
〉
+
〈 a

ψ, [ a

U, δ
a
χ ]
〉

. (D.4)

For the first term in (D.4), one has

〈 a

ψ, ∂tδ
a
χ
〉
= ∂t 〈

a

ψ, δ
a
χ〉 −

〈
∂t

a

ψ, δ
a
χ
〉

, (D.5)

where the first term vanishes after time integration as δ
a
χ(t1) = δ

a
χ(t2) = 0, and

hence, it will not be considered in the following developments. As for the second term
in (D.4), it can written as

〈 a

ψ, [ a

U, δ
a
χ ]〉 = 〈 a

ψ,L a
U

δ
a
χ〉 = L a

U
〈 a

ψ, δ
a
χ〉 − 〈L a

U

a

ψ, δ
a
χ〉 , (D.6)

where the Leibniz rule was used. Note that the Lie derivative of a scalar is a simple
derivative, and so, after multiplying by μ, one can write

La
U

〈 a

ψ, δ
a
χ〉μ = ιa

U
d〈 a

ψ, δ
a
χ〉μ = ιa

U
μ ∧ d〈 a

ψ, δ
a
χ〉 = d

(
〈 a

ψ, δ
a
χ〉 ιa

U
μ
)

− d(ιa
U

μ) 〈 a

ψ, δ
a
χ〉 ,

(D.7)

where usewasmade of (A.2) and (A.3). Note that, by definition of divergence, one also
has d(ι a

U
μ) = (Div

a

U)μ. Therefore, gathering (D.5), (D.6) and (D.7), and invoking
the notion of non-autonomous Truesdell derivative (C.3), i.e.,

T a
U

a

ψ = ∂t
a

ψ + L a
U

a

ψ + (Div
a

U)
a

ψ ,

and using Stokes’ theorem on the non-local term, the last term in (5.20) can be written
as

∫

B

〈 a

ψ, δ
a

U
〉
μ =

∫

∂B
j∗
(
〈 a

ψ, δ
a
χ〉 ι a

U
μ
)

−
∫

B
〈T a

U

a

ψ , δ
a
χ 〉μ . (D.8)
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Hence, from (D.2), (D.3) and (D.8) one can write (D.1) as

∫ t2

t1

{
−
∫

B
〈
ιYν

a
ην, δ

a
χ
〉
μ −

∫

B

〈
ι
��d

a
ξν

a
ην, δ

a
χ

〉
μ −

∫

∂B
j∗
(a

ξ ν ∧ ι
δ
a
χ

a
ην
)

+
∫

∂B
j∗
(
〈 a

ψ, δ
a
χ〉 ι a

U
μ
)

−
∫

B
〈T a

U

a

ψ , δ
a
χ 〉μ + 〈 a

τ , δ
a
χ〉μ

}
dt = 0 .

Nextwe look for amore convenient expression for the boundary terms. First we rewrite
the integrand of the boundary term in (D.3) using (A.2), viz.

a

ξ ν ∧ ι
δ
a
χ

a
ην = −ι

δ
a
χ
(
a

ξ ν ∧ a
ην) + 〈aξ ν, δ

a
χ〉a

ην .

Then, still denoting with ς the area form and with ν the unit normal 1-form on ∂B,
we make use of the identity (A.9) for the pullback of 2-forms via the inclusion map.

Hence, setting
a

ξ = a
�

a

Bν
a

ξ ν for the sake of simplicity, one can write

j∗
(a

ξ ν ∧ ι
δ
a
χ

a
ην
)

= −〈aξ ,
a

L〉〈ν, δ
a
χ〉 ς + 〈ν,

a

L〉〈aξ , δ
a
χ〉 ς .

Similarly, the boundary term in (D.8) can be written as

j∗
(
〈 a

ψ, δ
a
χ〉 ι a

U
μ
)

= 〈ν,
a

U〉〈 a

ψ, δ
a
χ〉 ς .

Therefore, the Lagrange–d’Alembert principle (D.1) for material variations gives

∫ t2

t1

∫

∂B

〈
〈aξ ,

a

L〉 ν − 〈ν,
a

L〉 a

ξ + 〈ν,
a

U〉 a

ψ , δ
a
χ
〉
ς dt

+
∫ t2

t1

∫

B

〈
−ιYν

a
ην − ι

��d
a
ξν

a
ην − T a

U

a

ψ + a
τ , δ

a
χ

〉
μ dt = 0 .
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