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A B S T R A C T

An elastic cloak hides a hole (or an inhomogeneity) from elastic fields. In this paper, a
formulation of the optimal design of elastic cloaks based on the adjoint state method, in
which the balance of linear momentum is enforced as a constraint, is presented. The design
parameters are the elastic moduli of the cloak, and the objective function is a measure of
the distance between the solutions in the physical and in the virtual bodies. Both the elastic
medium and the cloak are assumed to be made of isotropic linear elastic materials. However,
the proposed formulation can easily be extended to anisotropic solids. In order to guarantee
smooth inhomogeneous elastic moduli within the cloak a penalization term is added to the
objective function. Mixed finite elements are used for discretizing the weak formulation of the
optimization problem. Several numerical examples of optimal elastic cloaks designed for both
single and multiple loads are presented. We consider different geometries and loading types
and observe that in some cases the optimal elastic cloaks for cloaking holes (cavities) are made
of auxetic materials.

. Introduction

Cloaking objects from different types of waves has been a problem of interest for decades. In elasticity some original ideas
elated to cloaking can be found in (Gurney, 1938; Reissner and Morduchow, 1949; Mansfield, 1953) on reinforced holes in elastic
heets, and in (Hashin, 1962; Hashin and Shtrikman, 1963; Hashin, 1985; Hashin and Rosen, 1964; Benveniste and Milton, 2003) on
eutral inhomogeneities. One approach to cloaking is to use the invariance of the governing equations of a field theory under certain
ransformations. This has been referred to as transformation cloaking in the literature. In the case of electromagnetism the first works
n transformation cloaking are due to Pendry et al. (2006) and Leonhardt (2006). In the literature of elastic transformation cloaking
here have been many inconsistent formulations in the past fifteen years, which were recently critically reviewed in (Yavari and
olgoon, 2019; Golgoon and Yavari, 2021). It is now known that exact elastodynamic (and elastostatic) transformation cloaking is
ot possible; the obstruction to transformation cloaking is the balance of angular momentum. More specifically, the impossibility
f elastodynamic (and elastostatic) transformation cloaking has been proved for classical linear elastic solids, gradient solids (both
entrosymmetric and non-centrosymmetric), and (generalized) Cosserat solids (Yavari and Golgoon, 2019; Sozio et al., 2021). It
urns out that exact transformation cloaking is not possible even for elastic plates (Golgoon and Yavari, 2021). The following are
he no-go theorems of elastodynamic transformation cloaking:
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• Nonlinear elastodynamic transformation cloaking is not possible regardless of the shape of the hole and the cloak (Yavari and
Golgoon, 2019).

• Elastodynamic transformation cloaking is not possible in the setting of classical linear elasticity regardless of the shape of the
hole and the cloak (Yavari and Golgoon, 2019).

• In the small-on-large theory, i.e., linearized elasticity with respect to a pre-stressed configuration, elastodynamic transformation
cloaking is not possible regardless of the shape of the hole and the cloak (Yavari and Golgoon, 2019).

• Assuming that the virtual body is isotropic and centro-symmetric, elastodynamic transformation cloaking is not possible for
gradient elastic solids in either 2D or 3D for a hole (cavity) of any shape (Yavari and Golgoon, 2019).

• Assuming that the virtual body is isotropic and non-centrosymmetric, elastodynamic transformation cloaking is not possible
for any cylindrical hole (not necessarily circular) (Sozio et al., 2021).

• Elastodynamic transformation cloaking is not possible for linear (generalized) Cosserat elastic solids in dimension two (Yavari
and Golgoon, 2019).

• Elastodynamic transformation cloaking is not possible for a spherical cavity using a spherical cloak in linear (generalized)
Cosserat elastic solids (Yavari and Golgoon, 2019).

These no-go theorems imply that one cannot use transformation methods to design cloaks that can work for all possible loadings.
The engineering solution for elastic cloaking applications is to resort to approximate cloaking formulated as an optimal design
problem. This is what is done in the present paper.

There have been recent systematic studies of the optimal design of acoustic cloaks in the literature (Sanders et al., 2018; Chen
et al., 2021; Cominelli et al., 2022). There are no such systematic formulations in the case of elasticity. Fachinotti et al. (2018)
approximated a 2D elasticity problem by displacement-based finite elements and formulated the optimal design of an elastic cloak
at the level of finite elements. Each finite element has a vector of design parameters that describe the microstructure in that element.
Sanders et al. (2021) used an optimization method to design 2D elastostatic cloaks for lattice materials. In a recent paper, Wang et al.
(2022) proposed a discretized formulation that allowed them to consider different shapes of voids and cloaks, as well as different
boundary conditions and loadings. They used a data-driven approach for the design of unit cell tessellations that best fit the results
of the optimization. There have also been recent efforts in the literature in using topology optimization techniques for the design
of elastic cloaks (Ota and Fujii, 2022).

In this paper, we formulate the optimal design of elastic cloaks as a partial differential equation (PDE)-constrained optimization
problem. The design variables are the elastic properties of the cloak. We derive both the strong and weak governing equations of
the optimal design problem. A class of mixed finite elements are used to discretize the weak form of the governing equations. We
will present several examples of optimal elastic cloaks for both single and multiple loads.

This paper is structured as follows. In Section 2 the problem of elastic cloaking for a body with holes/inhomogeneities is defined
and a simple 1D example is discussed. The PDE-constrained optimization problem of elastic cloaking is formulated in Section 3.
Both the strong and weak governing equations of the optimization problem are derived. In Section 4 the optimization problem is
discretized using mixed finite elements. Several numerical examples are presented and discussed in Section 5. Conclusions are given
in Section 6.

2. Optimal design of a static elastic cloak

In this section we formulate elastostatic cloaking as an optimal design problem. We introduce the design variables, define an
objective function, and discuss a simple axisymmetric example.

2.1. Design variables and objective functions

Let us consider a body  made of a linear elastic solid. We assume that there is an object occupying a region  in this body.
This object can be a hole (cavity), an inhomogeneity or a combination of the two, while the set  can be either simply-connected
or non-simply-connected. Our goal is to design a cloak that encloses the object and hides it from static loads as much as possible.
Let us denote the cloaking region by  ⊂ . We assume that in the physical body the elastic constants 𝖢𝑎𝑏𝑐𝑑 and the mass density
𝜌0 in the exterior domain ̊ =  ⧵  are given and are uniform. The virtual body has the same uniform mass density and elastic
constants everywhere (see Fig. 1).

We denote the boundary of the cloak by 𝜕𝑜, thus 𝜕 = 𝜕𝑜 ∪ 𝜕. In the optimal design of a static elastic cloak the goal is to
ind the optimal elastic moduli inside the cloak. We assume the following traction and displacement boundary conditions

𝝈�̂� = �̄� , on 𝜕𝑁 ,

𝐮 = �̄� , on 𝜕𝐷 ,
(2.1)

here 𝜕 = 𝜕𝑁 ∪ 𝜕𝐷, and 𝜕𝑁 ∩ 𝜕𝐷 = ∅. In the case of a hole or a cavity, one can assume traction-free 𝜕, while in the case
f inhomogeneities, one would enforce the continuity of the traction vector. Other than the external traction forces we assume a
iven body force 𝐛 defined on ̊.

We define the corresponding virtual body ̃ to have the geometry of the (physical) body  but without any holes or
nhomogeneities, i.e., ̃ =  ∪ . We also assume that the virtual body has the mass density and elastic constants identical to

̊̃ ̊
2

hose of the physical body outside the cloak. Outside the cloak, i.e., in  = , the virtual body is under the same traction and
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Fig. 1. (a) Assuming a fixed cloak, the design parameters are the elastic moduli in the cloak . (b) The virtual body is without any holes (cavities) or
inhomogeneities. The optimal elastic constants of the cloak make the response of the physical body in  ⧵  as close as possible to that in the same set in the
virtual body.

displacement boundary conditions as the physical body is. Also, the body force distributions in the two problems are identical in
the region outside the cloak.

The design parameters are the elastic constants in the cloak, i.e., 𝖢𝑎𝑏𝑐𝑑 (𝑥), 𝑥 ∈ . Given 𝐛, �̄�, �̄�, we would like the mechanical
responses of the two bodies to be as close as possible outside the cloak (the exterior domain ̊ or a subset of it). There are
several possibilities for the objective functions. Examples are minimizing the difference between displacement fields, stress fields,
or energies. The objective function that we will be using is

𝗀 = 1
2 ∫⧵

‖𝐮 − �̃�‖2d𝑣 , (2.2)

where ‖𝐮−�̃�‖2 = (𝐮−�̃�)⋅(𝐮−�̃�). Note that unlike the classical minimum compliance problem (Jog et al., 1994; Bendsøe and Sigmund,
2013) the objective function in the elastic cloaking problem is not defined on the entire body. For given boundary conditions,
the virtual body has a unique displacement field that can be easily calculated and is independent of the design parameters. The
optimization problem is written as

inf
𝗖∈𝖤𝗅𝖺()

𝗀[𝗖] , (2.3)

where 𝖤𝗅𝖺() is the set of elasticity tensors defined in the cloaking region. Assuming that the cloak is isotropic2 but inhomogeneous,
in Cartesian coordinates 𝖢𝑎𝑏𝑐𝑑 (𝑥) = 𝜆(𝑥) 𝛿𝑎𝑏𝛿𝑐𝑑 +𝜇(𝑥)(𝛿𝑎𝑐𝛿𝑏𝑑 +𝛿𝑎𝑑𝛿𝑏𝑐 ),3 where the Lamé constants satisfy the constraints 𝜇(𝑥) > 0, and
3𝜅(𝑥) = 2𝜇(𝑥) + 3𝜆(𝑥) > 0.

2.2. Example of an infinitely-long hollow solid cylinder

Let us consider an infinitely-long hollow solid cylinder with inner and outer radii 𝑟𝑖 and 𝑟𝑜, respectively, as shown in Fig. 2 (top
left). The outer radius of the cloak is denoted by 𝑟𝑐 , with 𝑟𝑖 < 𝑟𝑐 < 𝑟𝑜. The cylinder is under a far-field traction 𝜎∞, i.e., 𝜎𝑟𝑟(𝑟𝑜) = 𝜎∞,
while the inner boundary is traction-free. Assuming radial displacements 𝐮 = 𝑢(𝑟) �̂�𝑟, the non-zero strain components are 𝜖𝑟𝑟(𝑟) = 𝑢′(𝑟)
and 𝜖𝜃𝜃(𝑟) = 𝑟 𝑢(𝑟). In cylindrical coordinates (𝑟, 𝜃, 𝑧) the non-zero elastic moduli for an isotropic solid are

𝖢𝑟𝑟𝑟𝑟(𝑟) = 𝜅(𝑟) + 4
3
𝜇 , 𝖢𝑟𝑟𝜃𝜃(𝑟) = 1

𝑟2
[

𝜅(𝑟) − 2
3
𝜇(𝑟)

]

, 𝖢𝜃𝜃𝜃𝜃(𝑟) = 1
𝑟4

[

𝜅(𝑟) + 4
3
𝜇(𝑟)

]

, (2.4)

while the only non-trivial equilibrium equation is4

𝑑
𝑑𝑟

𝜎𝑟𝑟 + 1
𝑟
𝜎𝑟𝑟 − 𝑟𝜎𝜃𝜃 = 0 . (2.5)

2 Extending this analysis to anisotropic cloaks would be straightforward.
3 In general curvilinear coordinates, 𝖢𝑎𝑏𝑐𝑑 (𝑥) = 𝜆(𝑥) 𝑔𝑎𝑏𝑔𝑐𝑑 + 𝜇(𝑥)

(

𝑔𝑎𝑐𝑔𝑏𝑑 + 𝑔𝑎𝑑𝑔𝑏𝑐
)

, where 𝑔𝑎𝑏 are components of the inverse metric tensor of the Euclidean
ambient space.

4 The physical components of the Cauchy stress �̂�𝑎𝑏 are related to the components of the Cauchy stress 𝜎𝑎𝑏 as �̂�𝑎𝑏 =
√

𝑔𝑎𝑎
√

𝑔𝑏𝑏 𝜎𝑎𝑏 (no summation) (Truesdell,
1953). Recall that the non-zero components of the spatial metric in polar coordinates are 𝑔𝑟𝑟 = 1 and 𝑔𝜃𝜃 = 𝑟2. Thus, �̂�𝑟𝑟 = 𝜎𝑟𝑟 and �̂�𝜃𝜃 = 𝑟2𝜎𝜃𝜃 . In terms of the
physical components, one recovers the familiar form of the equilibrium equation in the literature: 𝑑

𝑑𝑟
�̂�𝑟𝑟 + 1

𝑟
(�̂�𝑟𝑟 − �̂�𝜃𝜃 ) = 0. It should also be noted that in (2.4)

we are showing the curvilinear components of the elastic constants and not their physical components.
3
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Fig. 2. Objective function for the cloaking of an infinitely-long hollow solid cylinder, with 𝑟𝑖 = 0.5, 𝑟𝑐 = 1.0, 𝑟𝑜 = 2.0, �̊�∕𝜎∞ = 1, �̊�∕𝜎∞ = 1. Bottom left: Objective
function 𝗀 = 𝗀(𝑃 ) for the case 𝜇(𝑟) ≡ �̊�𝑃 and 𝜅(𝑟) ≡ �̊�𝑃 ; 𝗀 = 0 for 𝑃 as in (2.13). Top right: Two uniform independent elastic moduli; the objective function
vanishes on the curve (2.14) in the design plane 𝜅 − 𝜇; the upper and lower bounds (2.15) are indicated with dashed lines. Bottom right: Linear elastic moduli
𝜅(𝑟) = �̊�𝑃 (𝑟) and 𝜇(𝑟) = �̊�𝑃 (𝑟) (2.16); the objective function vanishes on the curve indicated in the design plane 𝑃𝑖 − 𝑃𝑐 .

The virtual problem. The virtual body is a solid cylinder with uniform elastic constants �̊� and �̊�. In this case the equilibrium
equation (2.5) simplifies to read

𝑟2�̃�′′(𝑟) + 𝑟�̃�′(𝑟) − �̃�(𝑟) = 0 . (2.6)

Solutions of (2.6) have the form �̃�(𝑟) = �̃�1𝑟 + �̃�2∕𝑟. Knowing that the displacement is bounded as 𝑟 → 0, we conclude that �̃�2 = 0,
while the traction boundary condition 𝜎𝑟𝑟(𝑟𝑜) = 𝜎∞ gives

�̃�1 =
3𝜎∞

2(3�̊� + �̊�)
, �̃�(𝑟) = 3𝜎∞𝑟

2(3�̊� + �̊�)
, �̃�𝑟𝑟(𝑟) ≡ 𝜎∞ . (2.7)

The physical problem. The physical body is assumed to have the uniform elastic constants �̊� and �̊� for 𝑟𝑐 < 𝑟 < 𝑟𝑜. In this region,
Eq. (2.6) holds, and hence one has 𝑢(𝑟) = 𝐶1𝑟 + 𝐶2∕𝑟. The traction boundary condition at 𝑟 = 𝑟𝑜 implies that

𝐶2 =
3�̊� + �̊�

�̊�
𝑟2𝑜𝐶1 −

𝜎∞

2�̊�
𝑟2𝑜 . (2.8)

For 𝑟𝑖 < 𝑟 < 𝑟𝑐 , the elastic moduli 𝜇(𝑟) and 𝜅(𝑟) are the design parameters. In this region, Eq. (2.6) is no longer valid, as (2.5) is
written as

𝑢′′(𝑟) +
[

3𝜅′(𝑟) + 4𝜇′(𝑟)
3𝜅(𝑟) + 4𝜇(𝑟)

+ 1
𝑟

]

𝑢′(𝑟) + 1
𝑟

[

3𝜅′(𝑟) − 2𝜇′(𝑟)
3𝜅(𝑟) + 4𝜇(𝑟)

− 1
𝑟

]

𝑢(𝑟) = 0 . (2.9)

The objective function. We consider an objective function as defined in (2.2), which in this case reads 𝗀 = 𝗀[𝜇(𝑟), 𝜅(𝑟)]. It should be
noted that 𝗀 is obtained by integrating ‖𝑢(𝑟) − �̃�(𝑟)‖2 over [𝑟𝑐 , 𝑟𝑜]. Therefore, Eq. (2.8) allows one to write the objective function in
the form 𝗀 = 𝗀(𝐶1). Using (2.7) one obtains

𝗀(𝐶1) = 𝜋
(

𝑟2𝑜 − 𝑟2𝑐
) 3�̊� 𝑟2𝑐 + (3�̊� + �̊�) 𝑟2𝑜

2�̊�(3�̊� + �̊�) 𝑟2𝑐

[

𝜎∞ − 2
3
(3�̊� + �̊�)𝐶1

]2
, (2.10)

which needs to be minimized with respect to 𝐶1. It is seen that 𝗀 vanishes for the following value of 𝐶1:

𝐶1 =
3𝜎∞ . (2.11)
4

2(3�̊� + �̊�)
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The vanishing of 𝗀 implies that the physical and virtual solutions are identical, which can be checked by plugging (2.11) into (2.8)
nd comparing it with (2.7). Moreover, the value given in (2.11) does not depend on the choice of the norm that is used to define
he objective function, as ‖𝐮 − �̃�‖ = 0 if and only if 𝐮 = �̃�. Therefore, any 𝜇(𝑟) and 𝜅(𝑟), 𝑟𝑖 ≤ 𝑟 ≤ 𝑟𝑐 , that satisfy the equilibrium

equation (2.9), together with the boundary conditions

𝑢(𝑟𝑐 ) =
3𝜎∞

2(3�̊� + �̊�)
𝑟𝑐 , 𝜎𝑟𝑟(𝑟𝑐 ) = 𝜎∞, 𝜎𝑟𝑟(𝑟𝑖) = 0 , (2.12)

generate a solution that is indistinguishable from the virtual problem, and hence, constitute a ‘‘perfect cloak’’. This might suggest
that the solution to the cloaking problem is not unique, as we see next.

The design variables. First we assume elastic moduli in the cloak of the type 𝜇(𝑟) ≡ �̊�𝑃 and 𝜅(𝑟) ≡ �̊�𝑃 , for a parameter 𝑃 > 0. This
allows us to study the objective function as a function of a single variable, i.e., 𝗀 = 𝗀(𝑃 ), as shown in Fig. 2 (bottom left). The
displacement field 𝑢(𝑟) for 𝑟𝑖 < 𝑟 < 𝑟𝑐 satisfies (2.6) and has the form 𝑢(𝑟) = 𝐷1𝑟 +𝐷2∕𝑟. It is seen that 𝗀(𝑃 ) vanishes for

𝑃 =
3𝑟2𝑖 �̊� + (3𝑟2𝑐 + 𝑟2𝑖 )�̊�

3(𝑟2𝑐 − 𝑟2𝑖 )�̊�
. (2.13)

ext, we consider general uniform elastic moduli 𝜇(𝑟) ≡ 𝜇 and 𝜅(𝑟) ≡ 𝜅 for 𝑟𝑖 < 𝑟 < 𝑟𝑐 . In this case, the objective function has the
form 𝗀 = 𝗀(𝜅, 𝜇), and hence, the displacement field 𝑢(𝑟) for 𝑟𝑖 < 𝑟 < 𝑟𝑐 still satisfies (2.6). It can be seen that 𝗀 vanishes on the curve

𝜅 = 𝜇
−𝜇(𝑟2𝑐 + 𝑟2𝑖 ) + (�̊� + �̊�)(𝑟2𝑐 + 𝑟2𝑖 )

𝜇(𝑟2𝑐 − 𝑟2𝑖 ) − 𝑟2𝑖 (�̊� + �̊�)
, (2.14)

as long as 𝜇 > 0 and 𝜅 > 0, i.e., when

𝑟2𝑖 (3�̊� + �̊�)

3(𝑟2𝑐 − 𝑟2𝑖 )
< 𝜇 <

(3�̊� + �̊�)
(

3𝑟2𝑐 + 𝑟2𝑖
)

3
(

𝑟2𝑐 − 𝑟2𝑖
) , (2.15)

ee Fig. 2 (top right). Note that both solutions (2.13) and (2.14) for the elastic constants are independent of the far-field load 𝜎∞.
astly, we assume that the elastic moduli are linear in 𝑟, and can be written as 𝜇(𝑟) = �̊� 𝑃 (𝑟) and 𝜅(𝑟) = �̊� 𝑃 (𝑟), for

𝑃 (𝑟) =
(𝑟𝑐 − 𝑟)𝑃𝑖 + (𝑟 − 𝑟𝑖)𝑃𝑐

𝑟𝑐 − 𝑟𝑖
. (2.16)

his implies that 𝜇(𝑟𝑖) = �̊� 𝑃𝑖, 𝜇(𝑟𝑐 ) = �̊� 𝑃𝑐 , 𝜅(𝑟𝑖) = �̊� 𝑃𝑖, and 𝜅(𝑟𝑐 ) = �̊� 𝑃𝑐 . In this case, the objective function can be written as
𝗀 = 𝗀(𝑃𝑖, 𝑃𝑐 ). Since the elastic moduli are not uniform, Eq. (2.6) is no longer valid, and one must solve (2.9) numerically, see Fig. 2
(bottom right).

Remark 2.1. Yavari and Golgoon (2019) showed that, for radial deformations, exact transformation cloaking is possible in both
nonlinear5 and linearized elasticity. In transformation cloaking the reference configuration of the physical body is mapped to the
reference configuration of a virtual body, that in this case is a hollow cylinder with inner and outer radii 𝜖 > 0 and 𝑟𝑜, respectively.
This is done using a cloaking map 𝜉(𝑟, 𝜃, 𝑧) = (𝑓 (𝑟), 𝜃, 𝑧), which is such that 𝑓 (𝑟𝑖) = 𝜖, 𝑓 (𝑟𝑐 ) = 𝑟𝑐 , 𝑓 ′(𝑟𝑐 ) = 1, while for 𝑟 > 𝑟𝑐 one has
𝑓 (𝑟) = 𝑟. In the case of radial deformations in a cylindrically-symmetric body, one obtains the following elastic moduli (Yavari and
Golgoon, 2019)

𝖢𝑟𝑟𝑟𝑟(𝑟) =
[3𝜅(𝑟) + 4𝜇(𝑟)] 𝑓 (𝑟)

3𝑟𝑓 ′(𝑟)
, 𝖢𝑟𝑟𝜃𝜃(𝑟) =

3𝜅(𝑟) − 2𝜇(𝑟)
3𝑟2

, 𝖢𝜃𝜃𝜃𝜃(𝑟) =
[3𝜅(𝑟) + 4𝜇(𝑟)] 𝑓 (𝑟)

3𝑟3𝑓 ′(𝑟)
, (2.17)

that is to be compared with (2.4). However, it can be shown that (2.17) violates the isotropy assumption.

3. Elastic cloaking optimization formulation

In this section, we obtain the strong form of the governing equations associated with the optimal design problem. Instead of
working with (2.3), we choose to minimize the objective function in the space of all possible design variables 𝗖 and displacements
𝐮, while equilibrium on the entire body is enforced as a constraint. We use the method of adjoint state. This method provides a
physical interpretation of the structure of the governing equations in the context of the method of Lagrange multipliers (Plessix,
2006).

3.1. The augmented objective function

Assuming that the physical body is made of a compressible linear elastic solid, the design of an optimal elastic cloak is written
as the following PDE-constrained optimization problem

inf
𝐮,𝗖

𝗀(𝐮,𝗖) subject to div(𝗖∇𝐮) + 𝐛 = 𝟎 in  ,

�̄� − (𝗖∇𝐮)�̂� = 𝟎 on 𝜕𝑁 ,
(3.1)

5 An underlying assumption is that radial deformations in the absence of body forces are permitted for the given energy function. Recall that radial deformations
5

re not universal for compressible solids (Ericksen, 1955).
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where

𝗀 = 1
2
‖𝐮 − �̃�‖2

𝐿2 = 1
2 ∫̊

‖𝐮 − �̃�‖2 d𝑣 , (3.2)

and the displacements are restricted to those that satisfy 𝐮 = �̄� on 𝜕𝐷. In the strong form of the governing equations, we assume
as much smoothness as needed. We will be more specific when writing the weak form of the governing equations. It should be
emphasized that in this optimization problem the displacement field is unknown on the entire body , while 𝗖 is unknown only
inside the cloak; outside the cloak 𝗖 = �̊�, and inside the inhomogeneities (if there are any) 𝗖 is given. It should also be mentioned
that the domain over which the integral in (3.2) is evaluated does not need to be the entire set ̊; it can be reduced to a subset
̊𝑀 ⊂ ̊ in which the effects of the cloak are to be measured. In order to solve (3.1), we define the following objective function

𝖿 = 1
2 ∫̊

‖𝐮 − �̃�‖2 d𝑣 + ∫
𝜸 ⋅ [div(𝗖∇𝐮) + 𝐛] d𝑣 + ∫𝜕𝑁

𝜸 ⋅
[

�̄� − (𝗖∇𝐮)�̂�
]

d𝑎 , (3.3)

where the Lagrange multiplier 𝜸, which is associated with the equilibrium equations, is an adjoint displacement variable, see
Appendix A. Later in this section we will prove that it satisfies the boundary condition 𝜸|𝜕𝐷 = 𝟎.

The way the functional (3.3) is written there is no control over how much the elastic constants of the cloak deviate from those
of the virtual body. In order to ensure that the cloak is not much softer or stiffer than the outside medium we would need to add
an extra term that penalizes large deviations from the elastic constants of the outside medium.6 We would also like to avoid abrupt
changes of the elastic moduli of the cloak by adding a penalizing term involving some norm of ∇𝗖. Suppose 𝑑𝗖(𝗖, �̊�) is the distance
between the elasticity tensor of the cloak and that of the virtual body, where 𝑑𝗖(., .) is a Sobolev metric that will be specified for
isotropic cloaks in the following. The modified objective function is defined as

𝖿 =𝑘
2 ∫̊

‖𝐮 − �̃�‖2 d𝑣 + 1
2
𝑑2𝗖(𝗖, �̊�) + ∫

𝜸 ⋅ [div(𝗖∇𝐮) + 𝐛] d𝑣 + ∫𝜕𝑁
𝜸 ⋅

[

�̄� − (𝗖∇𝐮)�̂�
]

d𝑎 , (3.4)

here the first term is multiplied by a constant 𝑘 > 0 to have a comparable value to 𝑑2
𝗖
(𝗖, �̊�). We later use 𝑘 as a control parameter

n the minimization scheme, see Section 5. The minimization problem (3.1) is now rewritten as

inf
𝗖,𝐮,𝜸

𝖿 (𝗖,𝐮, 𝜸) . (3.5)

.2. The design space

We assume that both the virtual body and the cloak are made of isotropic solids. Positive-definiteness of 𝗖 is equivalent to the
ollowing inequalities in the cloak:

𝜇(𝑥) > 0, and 𝜅(𝑥) > 0 . (3.6)

imilarly, outside the cloak one has �̊� > 0, and �̊� > 0. It is possible to eliminate the inequality constraints (3.6) by using a change of
ariables for the unknown elastic constants. Using an idea similar to what was used in designing approximate acoustic cloaks (Chen
t al., 2021; Cominelli et al., 2022), let us assume that

𝜇(𝑥) = �̊� 𝑒−𝜉(𝑥), 𝜅(𝑥) = �̊� 𝑒−𝜂(𝑥) . (3.7)

nowing that �̊� > 0 and �̊� > 0, one has 𝜇(𝑥) > 0 and 𝜅(𝑥) > 0 for any functions 𝜉(𝑥) and 𝜂(𝑥). Instead of using (𝜇(𝑥), 𝜅(𝑥)) as design
arameters with two inequality constraints, one can use (𝜉(𝑥), 𝜂(𝑥)) without any constraints.7 Hence, one can uniquely identify each
sotropic elasticity tensor 𝗖(𝑥) with a vector field 𝐯(𝑥) = (𝜉(𝑥), 𝜂(𝑥)) with values in R2. Notice that a constant elasticity tensor �̊� in
he outside region ̊ corresponds to 𝐯 ≡ 𝟎. Clearly, penalizing large deviations from the elastic constants of the outside medium is
quivalent to penalizing the norm of 𝐯. Penalizing sharp gradients of the Lamé constants is equivalent to penalizing sharp gradients
f 𝐯, as

∇𝜇(𝑥) = −�̊� 𝑒−𝜉(𝑥)∇ 𝜉(𝑥) , ∇𝜅(𝑥) = −�̊� 𝑒−𝜂(𝑥) ∇𝜂(𝑥) . (3.8)

herefore, we define the following metric in the design space

𝑑2𝗖(𝗖1,𝗖2) = ‖𝐯1 − 𝐯2‖2𝐻1 , (3.9)

here ‖ ⋅ ‖𝐻1 is any 𝐻1-equivalent Sobolev norm. For two isotropic elasticity tensors 𝗖1 and 𝗖2 corresponding to the pairs (𝜉1, 𝜂1)
nd (𝜉2, 𝜂2), we choose the following metric

𝑑2𝗖(𝗖1,𝗖2) = ∫

[

𝑚1(𝜉1 − 𝜉2)2 + 𝑚2(𝜂1 − 𝜂2)2
]

d𝑣 + ∫

[

𝛼1‖∇(𝜉1 − 𝜉2)‖2 + 𝛼2‖∇(𝜂1 − 𝜂2)‖2
]

d𝑣 , (3.10)

here 𝑚1, 𝑚2, 𝛼1, and 𝛼2 are some positive constants. In Appendix B we prove that 𝑑𝗖 is indeed a metric. Hence, the second term
n (3.4) reads

𝑑2𝗖(𝗖, �̊�) = ∫

[

𝑚1𝜉
2 + 𝑚2𝜂

2
]

d𝑣 + ∫

[

𝛼1‖∇𝜉‖2 + 𝛼2‖∇𝜂‖2
]

d𝑣 . (3.11)

6 This extra term is standard in optimal control (Tröltzsch, 2010).
7 Another choice for the change of variables is 𝜇(𝑥) = �̊� 𝜉2(𝑥), and 𝜅(𝑥) = �̊� 𝜂2(𝑥).
6
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3.3. The strong form of the governing equations

We solve (3.5) by using the methods of calculus of variations. We start by taking 𝗖-variations of the objective function.

-Variations. Plugging (3.11) in (3.4) and taking variations with respect to 𝜉 and 𝜂, one can write

𝛿𝗖𝖿 = ∫

(

𝑚1𝜉 𝛿𝜉 + 𝑚2𝜂 𝛿𝜂
)

d𝑣 + ∫

[

𝛼1∇𝜉 ⋅ ∇𝛿𝜉 + 𝛼2∇𝜂 ⋅ ∇𝛿𝜂
]

d𝑣 + ∫
𝜸 ⋅ div(𝛿𝗖∇𝐮) d𝑣 − ∫𝜕𝑁

𝜸 ⋅ (𝛿𝗖∇𝐮)�̂� d𝑎 . (3.12)

ote that the second term in (3.12) can be written as

∫

[

𝛼1∇𝜉 ⋅ ∇𝛿𝜉 + 𝛼2∇𝜂 ⋅ ∇𝛿𝜂
]

d𝑣 = ∫𝜕

(

𝛼1∇𝜉 ⋅ �̂� 𝛿𝜉 + 𝛼2∇𝜂 ⋅ �̂� 𝛿𝜂
)

d𝑎 − ∫

(

𝛼1∇2𝜉 𝛿𝜉 + 𝛼2∇2𝜂 𝛿𝜂
)

d𝑣 . (3.13)

or the last two terms in (3.12) one has

∫
𝜸 ⋅ div(𝛿𝗖∇𝐮) d𝑣 − ∫𝜕𝑁

𝜸 ⋅ (𝛿𝗖∇𝐮)�̂� d𝑎 = ∫
div[(𝛿𝗖∇𝐮)𝜸] d𝑣 − ∫

∇𝜸 ∶ 𝛿𝗖∇𝐮 d𝑣 − ∫𝜕𝑁
𝜸 ⋅ (𝛿𝗖∇𝐮)�̂� d𝑎

= ∫𝜕𝑁
(𝛿𝗖∇𝐮)𝜸 ⋅ �̂� d𝑎 − ∫

∇𝜸 ∶ 𝛿𝗖∇𝐮 d𝑣 − ∫𝜕𝑁
𝜸 ⋅ (𝛿𝗖∇𝐮)�̂� d𝑎 = −∫

∇𝜸 ∶ 𝛿𝗖∇𝐮 d𝑣 ,
(3.14)

here use was made of the fact that 𝛿𝗖|⧵ = 𝟎, and 𝜸 = 𝟎 on 𝜕𝐷 (as is shown later in this section). Note that for isotropic solids
ne has

∇𝜸 ∶ 𝛿𝗖∇𝐮 = 𝛿𝜆(div 𝜸)(div𝐮) + 2𝛿𝜇 (𝗌𝗒𝗆∇𝜸 ∶ 𝗌𝗒𝗆∇𝐮) =
(

𝛿𝜅 − 2
3
𝛿𝜇

)

(div 𝜸)(div𝐮) + 2𝛿𝜇 (𝗌𝗒𝗆∇𝜸 ∶ 𝗌𝗒𝗆∇𝐮) , (3.15)

s 𝖢𝑎𝑏𝑐𝑑 = 𝜆 𝛿𝑎𝑏𝛿𝑐𝑑 +𝜇
(

𝛿𝑎𝑐𝛿𝑏𝑑 + 𝛿𝑎𝑑𝛿𝑏𝑐
)

in Cartesian coordinates. Therefore, using 𝛿𝜇 = −�̊� 𝑒−𝜉(𝑥) 𝛿𝜉 and 𝛿𝜅 = −�̊� 𝑒−𝜂(𝑥) 𝛿𝜂, one obtains

−∫
∇𝜸 ∶ 𝛿𝗖∇𝐮 d𝑣 = ∫

[

−2
3
�̊� 𝑒−𝜉 (div 𝜸)(div𝐮) + 2�̊� 𝑒−𝜉 (𝗌𝗒𝗆∇𝜸 ∶ 𝗌𝗒𝗆∇𝐮)

]

𝛿𝜉 d𝑣 + ∫
�̊� 𝑒−𝜂(div 𝜸)(div𝐮) 𝛿𝜂 d𝑣 , (3.16)

here 𝗌𝗒𝗆 indicates the symmetric part of a second-order tensor, i.e., (𝗌𝗒𝗆𝐴)𝑎𝑏 =
1
2 (𝐴𝑎𝑏 + 𝐴𝑏𝑎). We are looking for extremal points

f 𝖿 , i.e., fields 𝗖,𝐮, 𝜸 such that 𝛿𝗖𝖿 = 0. Using the arbitrariness of both 𝛿𝜉 and 𝛿𝜂, from (3.13) and (3.16) one obtains the strong
form of the governing equations associated with 𝗖-variations:

−2
3
�̊� 𝑒−𝜉 (div 𝜸)(div𝐮) + 2�̊� 𝑒−𝜉 (𝗌𝗒𝗆∇𝜸 ∶ 𝗌𝗒𝗆∇𝐮) + 𝑚1𝜉 − 𝛼1∇2𝜉 = 0 , �̊� 𝑒−𝜂(div 𝜸)(div𝐮) + 𝑚2𝜂 − 𝛼2∇2𝜂 = 0 , (3.17)

while on 𝜕 we have the Neumann boundary conditions ∇𝜉 ⋅ �̂� = 0 and ∇𝜂 ⋅ �̂� = 0.

𝐮-Variations. Next, we take the 𝐮-variation of the objective function, which reads

𝛿𝐮𝖿 = ∫̊
𝑘(𝐮 − �̃�) ⋅ 𝛿𝐮 d𝑣 + ∫

𝜸 ⋅ div(𝗖∇𝛿𝐮) d𝑣 − ∫𝜕𝑁
𝜸 ⋅ (𝗖∇𝛿𝐮)�̂� d𝑎 . (3.18)

he second term on the right-hand side of (3.18) can be simplified as

∫
𝜸 ⋅ div(𝗖∇𝛿𝐮) d𝑣 = ∫

[div(𝗖∇𝛿𝐮 ⋅ 𝜸) − ∇𝜸 ∶ 𝗖∇𝛿𝐮] d𝑣 = −∫
𝗖∇𝜸 ∶ ∇𝛿𝐮 d𝑣 + ∫𝜕

𝜸 ⋅ (𝗖∇𝛿𝐮)�̂� d𝑎

= −∫

{

div [(𝗖∇𝜸)𝛿𝐮] − div(𝗖∇𝜸) ⋅ 𝛿𝐮
}

d𝑣 + ∫𝜕
𝜸 ⋅ (𝗖∇𝛿𝐮)�̂� d𝑎

= ∫
div(𝗖∇𝜸) ⋅ 𝛿𝐮 d𝑣 − ∫𝜕𝑁

(𝗖∇𝜸)�̂� ⋅ 𝛿𝐮 d𝑎 + ∫𝜕
𝜸 ⋅ (𝗖∇𝛿𝐮)�̂� d𝑎 .

(3.19)

he boundary condition 𝐮 = �̄� on 𝜕𝐷 implies that 𝛿𝐮 = 𝟎 on 𝜕𝐷. Knowing that 𝛿𝐮 = 𝟎 on 𝜕𝐷 is not enough to imply the vanishing
f ∇𝛿𝐮 on 𝜕𝐷, as ∇�̂�𝛿𝐮 is not specified. The last term on the right-hand side of (3.19) can be written as

∫𝜕
𝜸 ⋅ (𝗖∇𝛿𝐮)�̂� d𝑎 = ∫𝜕𝑁

𝜸 ⋅ (𝗖∇𝛿𝐮)�̂� d𝑎 + ∫𝜕𝐷
∇�̂�𝛿𝐮 ⋅

[

𝗖(𝜸 ⊗ �̂�)
]

�̂� d𝑎 . (3.20)

he 𝐮-variation (3.18) now reads

𝛿𝐮𝖿 = ∫̊
𝑘(𝐮 − �̃�) ⋅ 𝛿𝐮 d𝑣 + ∫

div(𝗖∇𝜸) ⋅ 𝛿𝐮 d𝑣 − ∫𝜕𝑁
(𝗖∇𝜸)�̂� ⋅ 𝛿𝐮 d𝑎 + ∫𝜕𝐷

∇�̂�𝛿𝐮 ⋅
[

𝗖(𝜸 ⊗ �̂�)
]

�̂� d𝑎 = 0 . (3.21)

rbitrariness of ∇�̂�𝛿𝐮 on 𝜕𝐷 implies that
[

𝗖(𝜸 ⊗ �̂�)
]

�̂� = 𝟎 on 𝜕𝐷, (3.22)

r in components 𝖢𝑎𝑏𝑐𝑑 𝑛𝑏 𝛾𝑐 𝑛𝑑 = 0. Using an argument similar to that used in Appendix A one can show that 𝜸 = 𝟎 on 𝜕𝐷. Therefore,
he 𝐮-variation (3.18) is simplified to read

𝛿𝐮𝖿 = 𝑘(𝐮 − �̃�) ⋅ 𝛿𝐮 d𝑣 + div(𝗖∇𝜸) ⋅ 𝛿𝐮 d𝑣 − (𝗖∇𝜸)�̂� ⋅ 𝛿𝐮 d𝑎 . (3.23)
7
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Thus, the strong form of the governing equations associated with 𝐮-variations is

div(𝗖∇𝜸) = 𝟎 in  ,

div(�̊�∇𝜸) + 𝑘(𝐮 − �̃�) = 𝟎 in ̊ ,

(𝗖∇𝜸)�̂� = 𝟎 on 𝜕𝑁 ,

𝜸 = 𝟎 on 𝜕𝐷 .

(3.24)

qs. (3.24) represent the adjoint elasticity problem, in which 𝜸 is a displacement field on . In this adjoint problem, the body forces
re discontinuous, being 𝑘(𝐮− �̃�) in ̊, while they vanish in . As for the adjoint boundary conditions, 𝜸 is fixed on 𝜕𝐷, while 𝜕𝑁
s traction-free.

he governing equations of the optimization problem. Notice that 𝜸-variations give the balance of linear momentum with its associated
oundary conditions. Therefore, it is now possible to write the complete set of governing equations. First, we define the following
perators:8

𝑊1(𝜉,𝐮, 𝜸) = −2
3
�̊� 𝑒−𝜉 (div 𝜸)(div𝐮)𝐠♯ + 2�̊� 𝑒−𝜉 (sym∇𝜸 ∶ sym∇𝐮) , 𝑊2(𝜂,𝐮, 𝜸) = �̊� 𝑒−𝜂(div 𝜸)(div𝐮) , (3.25)

representing the work done by the stress on the adjoint displacements 𝜸 (or vice versa, the work done by the adjoint stress on the
standard displacements 𝐮). In particular, 𝑊1 is associated with shear deformations, while 𝑊2 is associated with changes in volume.
The total work is given by 𝑊1 +𝑊2. We also define the stress operator as

𝝈(𝜉, 𝜂, 𝐲) =
(

−2
3
�̊� 𝑒−𝜉 + �̊� 𝑒−𝜂

)

(div 𝐲)𝐠♯ + 2�̊� 𝑒−𝜉 (sym∇𝐲)♯ . (3.26)

n summary, the complete optimization BVP reads:

𝑊1(𝜉,𝐮, 𝜸) 𝑒−𝜉 + 𝑚1𝜉 − 𝛼1∇2𝜉 = 0 in  ,

𝑊2(𝜂,𝐮, 𝜸) 𝑒−𝜂 + 𝑚2𝜂 − 𝛼2∇2𝜂 = 0 in  ,

∇𝜉 ⋅ �̂� = 0 on 𝜕 ,

∇𝜂 ⋅ �̂� = 0 = 0 on 𝜕 ,

div𝝈(𝜉, 𝜂, 𝜸) = 𝟎 in  ,

div𝝈(0, 0, 𝜸) + 𝑘(𝐮 − �̃�) = 𝟎 in ̊ ,

𝝈(𝜉, 𝜂, 𝜸)�̂� = 𝟎 on 𝜕𝑁 ,

𝜸 = 𝟎 on 𝜕𝐷 ,

div𝝈(𝜉, 𝜂,𝐮) + 𝐛 = 𝟎 in  ,

�̄� − 𝝈(𝜉, 𝜂,𝐮)�̂� = 𝟎 on 𝜕𝑁,

𝐮 − �̄� = 𝟎 on 𝜕𝐷 .

(3.27)

Remark 3.1. Under a proper rescaling of the penalty factor 𝑘, the design of a cloak is not affected by the intensity of the load it
is optimized for. Moreover, the performance of a given cloak is not affected by the intensity of the external loads. In order to show
this, let us assume that �̄�, �̄� and 𝐛 are replaced by �̄�′ = 𝑐 �̄�, �̄�′ = 𝑐 �̄� and 𝐛′ = 𝑐 𝐛, for 𝑐 ∈ R. Since the virtual problem is linear, its
solution is 𝑐 �̃�. Then, if the penalty factor is rescaled as 𝑘′ = 𝑘∕𝑐2, it is straightforward to see that 𝑐 𝐮, 𝜸∕𝑐, 𝜉, 𝜂 are solutions of (3.27)
for the loads and boundary conditions �̄�′, �̄�′ and 𝐛′. Moreover, since we measure the performance of a cloak using a normalized
metric, one has

‖𝑐 𝐮 − 𝑐 �̃�‖𝐿2

‖𝑐 �̃�‖𝐿2
=

‖𝐮 − �̃�‖𝐿2

‖�̃�‖𝐿2
. (3.28)

ote that the rescaling of the penalty factor can be avoided by normalizing it with respect to ‖�̃�‖𝐿2 . The same rescaling property
oes not hold when one replaces �̄�, �̄� and 𝐛 with linear combinations

�̄�′ =
∑

𝑖
𝑐𝑖�̄�𝑖 , �̄�′ =

∑

𝑖
𝑐𝑖 �̄� , 𝐛′ =

∑

𝑖
𝑐𝑖𝐛 . (3.29)

his is due to the fact that, although the 𝐿2 norm satisfies absolute homogeneity ‖𝑐 𝐱‖2
𝐿2 = 𝑐2‖𝐱‖, in the case of sums only the

riangular inequality holds. Therefore, while the intensity is not a factor, the placement and direction of loads affect both the design
f a cloak and its performance. For this reason, it is crucial to consider optimal design for multiple loads as well.

8 The sharp operator ♯ raises indices. 𝐠 is the spatial metric and has components 𝑔𝑎𝑏 in the curvilinear coordinates {𝑥𝑎}. 𝐠♯ is the inverse of the spatial metric
𝑎𝑏 𝑎𝑐 𝑎
8

and has components 𝑔 such that 𝑔 𝑔𝑐𝑏 = 𝛿𝑏 .
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3.4. Cloaking under multiple loads

Consider 𝑁 different loads with their corresponding boundary tractions �̄�(𝑖), and body forces 𝐛(𝑖), 𝑖 = 1, 2,… , 𝑁 . We denote the
corresponding physical and virtual displacement fields by 𝐮(𝑖) and �̃�(𝑖) respectively. We assign a weight 𝑤𝑖 ≥ 0 to each load such
that ∑𝑁

𝑖=1 𝑤𝑖 = 1. Each combination of traction and displacement boundary conditions is associated with a partition of 𝜕 into 𝜕𝐷(𝑖)


and 𝜕𝑁(𝑖)
, 𝑖 = 1, 2,… , 𝑁 . Recalling (3.4) and (3.10), the objective function is defined as

𝖿 = 𝑘
2

𝑁
∑

𝑖=1
𝑤𝑖 ∫̊

‖𝐮(𝑖) − �̃�(𝑖)‖2 d𝑣 + ∫

[

𝑚1𝜉
2 + 𝑚2𝜂

2
]

d𝑣 + ∫

[

𝛼1‖∇𝜉‖2 + 𝛼2‖∇𝜂‖2
]

d𝑣

+
𝑁
∑

𝑖=1
𝑤𝑖 ∫

𝜸(𝑖) ⋅
[

div
(

𝗖∇𝐮(𝑖)
)

+ 𝐛(𝑖)
]

d𝑣 +
𝑁
∑

𝑖=1
𝑤𝑖 ∫𝜕𝑁(𝑖)

𝜸(𝑖) ⋅
[

�̄�(𝑖) −
(

𝗖∇𝐮(𝑖)
)

�̂�
]

d𝑎 ,

(3.30)

here 𝜸(𝑖) is the Lagrange multiplier field enforcing equilibrium equations for the 𝑖th loading. The minimization problem for the
ptimal design of an elastic cloak under multiple loads is rewritten as

inf
𝗖

𝐮(1) ,…,𝐮(𝑁)
𝜸(1) ,…,𝜸(𝑁)

𝖿 (𝗖,𝐮(1),… ,𝐮(𝑁), 𝜸(1),… , 𝜸(𝑁)) . (3.31)

n the case of isotropic solids, we take variations of 𝜉, 𝜂, 𝐮(𝑖), 𝜸(𝑖). Following the same calculations as in the single-load case, one
btains the strong form of the governing equations as (for 𝑖 = 1, 2,… , 𝑁)

𝑒−𝜉
𝑁
∑

𝑗=1
𝑤𝑖𝑊1

(

𝜉,𝐮(𝑗), 𝜸(𝑗)
)

+ 𝑚1𝜉 − 𝛼1∇2𝜉 = 0 in  ,

𝑒−𝜂
𝑁
∑

𝑗=1
𝑤𝑖𝑊2

(

𝜂,𝐮(𝑗), 𝜸(𝑗)
)

+ 𝑚2𝜂 − 𝛼2∇2𝜂 = 0 in  ,

∇𝜉 ⋅ �̂� = 0 on 𝜕 ,

∇𝜂 ⋅ �̂� = 0 = 0 on 𝜕 ,

div𝝈(𝜉, 𝜂, 𝜸(𝑖)) = 𝟎 in  ,

div𝝈(0, 0, 𝜸(𝑖)) + 𝑘(𝐮(𝑖) − �̃�(𝑖)) = 𝟎 in ̊ ,

𝝈(𝜉, 𝜂, 𝜸(𝑖))�̂� = 𝟎 on 𝜕𝑁(𝑖)
 ,

𝜸(𝑖) = 𝟎 on 𝜕𝐷(𝑖)
 ,

div𝝈(𝜉, 𝜂,𝐮(𝑖)) + 𝐛(𝑖) = 𝟎 in 

�̄�(𝑖) − 𝝈(𝜉, 𝜂,𝐮(𝑖))�̂� = 𝟎 on 𝜕𝑁(𝑖)
 ,

𝐮(𝑖) − �̄�(𝑖) = 𝟎 on 𝜕𝐷(𝑖)
 .

(3.32)

. Finite element discretization of the optimization problem

In this section we propose a weak formulation of the cloaking optimization problem and discuss a mixed finite element
iscretization of the weak governing equations.

.1. The weak form of the governing equations

Let 𝐿2(), 𝐿2(𝑇), and 𝐿2(⊗2𝑇) be the spaces of square integrable scalar fields, vector fields, and
(2
0

)

-tensor fields in ,
espectively. We also define the same spaces for , and ̊ ⊂  and their boundaries. Let us also define

𝐻1(𝑇) ∶=
{

𝐮 ∈ 𝐿2(𝑇) ∶ ∇𝐮 ∈ 𝐿2(⊗2𝑇)
}

,

𝐻1(𝑇, 𝜕𝐷, �̄�) ∶=
{

𝐮 ∈ 𝐻1(𝑇) ∶ 𝐮|𝜕𝐷 = �̄�
}

,

𝐻1(𝑇, 𝜕𝐷) ∶= 𝐻1(𝑇, 𝜕𝐷, 𝟎),
𝐻1() ∶=

{

𝑓 ∈ 𝐿2() ∶ ∇𝑓 ∈ 𝐿2(𝑇)
}

,

(4.1)

and 𝐻
1
2 (𝑇 𝜕) ∶= tr

(

𝐻1(𝑇)
)

, where tr ∶ 𝐻1(𝑇) → 𝐿2(𝑇 𝜕) is the trace operator (Evans, 2010).

roblem 4.1 (Weak Form of the Governing Equations). Let 𝒃(𝑖) be a body force of 𝐿2-class, 𝐮(𝑖) a boundary displacement on 𝜕𝐷(𝑖)


of 𝐻
1
2 -class, and 𝐭 a boundary traction on 𝜕  of 𝐿2-class for 𝑖 = 1, 2,… , 𝑁 . Let the displacement field �̃� ∈ 𝐻1(𝑇 ̃, 𝜕 ̃, �̄� )
9

(𝑖) 𝑁(𝑖) (𝑖) 𝐷(𝑖) (𝑖)
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c

be the solution of the virtual problem for the same given 𝒃(𝑖), 𝐮(𝑖), 𝐭(𝑖), for 𝑖 = 1, 2,… , 𝑁 .9 Find (𝜉, 𝜂,𝐮(1),… ,𝐮(𝑁), 𝜸(1),… ,𝐮(𝑁)) ∈
𝐻1() ×𝐻1() ×𝐻1(𝑇, 𝜕𝐷(1)

, �̄�(1)) ×⋯ ×𝐻1(𝑇, 𝜕𝐷(𝑁)
, �̄�(𝑁)) ×𝐻1(𝑇, 𝜕𝐷(1)

) ×⋯ ×𝐻1(𝑇, 𝜕𝐷(𝑁)
) such that, for 𝑖 = 1, 2,… , 𝑁 ,

𝑁
∑

𝑗=1
𝑤𝑗 ∫

𝑊1(𝜉,𝐮(𝑖), 𝜸(𝑗)) 𝛿𝜉 d𝑣 + ∫
𝑚1𝜉 𝛿𝜉 d𝑣 + ∫

𝛼1∇𝜉 ⋅ ∇𝛿𝜉d𝑣 = 0 , ∀𝛿𝜉 ∈ 𝐻1() ,

𝑁
∑

𝑗=1
𝑤𝑗 ∫

𝑊2(𝜂,𝐮(𝑗), 𝜸(𝑗)) 𝛿𝜂 d𝑣 + ∫
𝑚2𝜂 𝛿𝜂 d𝑣 + ∫

𝛼2∇𝜂 ⋅ ∇𝛿𝜂 d𝑣 = 0 , ∀𝛿𝜂 ∈ 𝐻1() ,

𝑘∫̊
(𝐮(𝑖) − �̃�(𝑖)) ⋅ 𝛿𝐮(𝑖) d𝑣 − ∫

𝝈(𝜉, 𝜂, 𝜸(𝑖)) ∶ ∇𝛿𝐮(𝑖) d𝑣 = 0 , ∀𝛿𝐮(𝑖) ∈ 𝐻1(𝑇, 𝜕𝐷(𝑖)
) ,

−∫
𝝈(𝜉, 𝜂,𝐮(𝑖)) ∶ ∇𝛿𝜸, d𝑣 + ∫

𝐛(𝑖) ⋅ 𝛿𝜸(𝑖) d𝑣 + ∫𝜕𝑁
�̄�(𝑖) ⋅ 𝛿𝜸(𝑖) d𝑎 = 0 , ∀𝛿𝜸(𝑖) ∈ 𝐻1(𝑇, 𝜕𝐷(𝑖)

) .

(4.3)

Let ⟨⟨, ⟩⟩ denote the 𝐿2-inner products of scalar, vector, and tensor fields on a set , which are defined as ⟨⟨𝑓, 𝑔⟩⟩ ∶= ∫ 𝑓𝑔 d𝑎,
⟨𝒀 ,𝒁⟩⟩ ∶= ∫ 𝑌 𝐼𝑍𝐼𝑑𝐴, and ⟨⟨𝑺,𝑻 ⟩⟩ ∶= ∫ 𝑆𝐼𝐽𝑇 𝐼𝐽𝑑𝐴, respectively. The weak form of the governing equations is written more
ompactly as

𝑁
∑

𝑗=1
𝑤𝑗⟨⟨𝑊1(𝜉,𝐮(𝑗), 𝜸(𝑗)) + 𝑚1𝜉, 𝛿𝜉⟩⟩ + ⟨⟨𝛼1∇𝜉,∇𝛿𝜉⟩⟩ = 0 , ∀𝛿𝜉 ∈ 𝐻1() ,

𝑁
∑

𝑗=1
𝑤𝑗⟨⟨𝑊2(𝜂,𝐮(𝑗), 𝜸(𝑗)) + 𝑚2𝜂, 𝛿𝜂⟩⟩ + ⟨⟨𝛼2∇𝜂,∇𝛿𝜂⟩⟩ = 0 , ∀𝛿𝜂 ∈ 𝐻1() ,

𝑘⟨⟨(𝐮(𝑖) − �̃�(𝑖)), 𝛿𝐮(𝑖)⟩⟩̊ − ⟨⟨𝝈(𝜉, 𝜂, 𝜸(𝑖)),∇𝛿𝐮(𝑖)⟩⟩ = 0 , ∀𝛿𝐮(𝑖) ∈ 𝐻1(𝑇, 𝜕𝐷(𝑖)
) ,

−⟨⟨𝝈(𝜉, 𝜂,𝐮(𝑖)),∇𝛿𝜸(𝑖)⟩⟩ + ⟨⟨𝐛(𝑖), 𝛿𝜸(𝑖)⟩⟩ + ⟨⟨�̄�(𝑖), 𝛿𝜸(𝑖)⟩⟩𝜕𝑁(𝑖)
= 0 , ∀𝛿𝜸(𝑖) ∈ 𝐻1(𝑇, 𝜕𝐷(𝑖)

) ,

(4.4)

for 𝑖 = 1, 2,… , 𝑁 . Eq. (4.4) represents a system of 2𝑁 + 2 equations,10 all coupled by the effect of the elastic constants 𝜉(𝑥) and
𝜂(𝑥). Each load case independently contributes to the system with the balance of the standard and adjoint linear momenta (4.4)3
and (4.4)4. Moreover, all the load cases appear in the 𝗖-Eqs. (4.4)1 and (4.4)2 through the mixed energies 𝑊1(𝜉,𝐮(𝑗), 𝜸(𝑗)) and
𝑊2(𝜂,𝐮(𝑗), 𝜸(𝑗)), 𝑖 = 1, 2,… , 𝑁 .

As for the second variations of the objective function, they can be arranged in a matrix with the following structure

⎡

⎢

⎢

⎢

⎢

⎣

𝛿𝜉𝜉𝖿 sym sym sym
𝛿𝜉𝜂𝖿 𝛿𝜂𝜂𝖿 sym sym

[𝛿𝜉𝐮(𝑖) 𝖿 ]
𝑁×1 [𝛿𝜂𝐮(𝑖) 𝖿 ]

𝑁×1 [𝛿𝐮(𝑖)𝐮(𝑖) 𝖿 ]
𝑁×𝑁 sym

[𝛿𝜉𝜸(𝑖) 𝖿 ]
𝑁×1 [𝛿𝜂𝜸(𝑖) 𝖿 ]

𝑁×1 [𝛿𝐮(𝑖)𝜸(𝑖) 𝖿 ]
𝑁×𝑁 [𝛿𝜸(𝑖)𝜸(𝑖) 𝖿 ]

𝑁×𝑁

⎤

⎥

⎥

⎥

⎥

⎦

. (4.5)

Recalling the definitions (3.25) and (3.26), in the single-load case the matrix (4.5) is reduced to the following 4 × 4 matrix:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⟨⟨−𝑊1(𝜉,𝐮, 𝜸) + 𝑚1, 𝛿𝜉𝛿𝜉⟩⟩ + ⟨⟨𝛼1∇𝛿𝜉,∇𝛿𝜉⟩⟩

0

⟨⟨𝑊1(𝜉, 𝛿𝐮, 𝜸), 𝛿𝜉⟩⟩

⟨⟨𝑊1(𝜉,𝐮, 𝛿𝜸), 𝛿𝜉⟩⟩

sym

⟨⟨−𝑊2(𝜂,𝐮, 𝜸) + 𝑚2, 𝛿𝜂𝛿𝜂⟩⟩ + ⟨⟨𝛼2∇𝛿𝜂,∇𝛿𝜂⟩⟩

⟨⟨𝑊2(𝜂, 𝛿𝐮, 𝜸), 𝛿𝜂⟩⟩

⟨⟨𝑊2(𝜂,𝐮, 𝛿𝜸), 𝛿𝜂⟩⟩

sym

sym

𝑘⟨⟨𝛿𝐮, 𝛿𝐮⟩⟩̊

−⟨⟨𝑊1(𝜉, 𝛿𝐮, 𝛿𝜸) +𝑊2(𝜂, 𝛿𝐮, 𝛿𝜸), 1⟩⟩

sym

sym

sym

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (4.6)

4.2. Mixed finite elements

Let ℎ denote an arbitrary triangulation (or simply a mesh) of the reference configuration , where ℎ ∶= 𝗆𝖺𝗑 𝖽𝗂𝖺𝗆  for all
triangles ∀ ∈ ℎ. Also, ℎ and ̊ℎ are the triangulation of the cloaking region  and its complement ̊, respectively. We define the
following finite element space:

𝑉ℎ(𝑇ℎ) ∶=
{

𝑽 ℎ ∈ 𝐿2(𝑇ℎ) ∶ ∀ ∈ ℎ, 𝑽 ℎ| ∈ 1(𝑇  ), ∀E ∈ E𝑖
ℎ

, [[𝑽 ℎ]]E = 𝟎
}

,

𝑉ℎ(ℎ) ∶=
{

𝑓ℎ ∈ 𝐿2(ℎ) ∶ ∀ ∈ ℎ, 𝑓ℎ| ∈ 1( ), ∀E ∈ E𝑖
ℎ
, [[𝑓ℎ]]E = 𝟎

}

,
(4.7)

9 Note that �̃�(𝑖) is the solution of the following problem

∫̃

[

�̊�(div �̃�(𝑖))𝐠♯ + 2�̊�(sym∇�̃�(𝑖))♯
]

∶∇𝐰(𝑖) d𝑣 = ∫̃
𝐛(𝑖) ⋅ 𝐰(𝑖) d𝑣 + ∫𝜕𝑁(𝑖)

̃
�̄�(𝑖) ⋅ 𝐰(𝑖) d𝑎 , ∀𝐰(𝑖) ∈ 𝐻1(𝑇 ̃, 𝜕𝐷(𝑖)

̃) . (4.2)

10
10

In the anisotropic case, one would obtain 2𝑁 +𝑀 equations, where 𝑀 is the number of independent elastic moduli.
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where E𝑖
ℎ

and E𝑖
ℎ

are the sets of interior edges of ℎ and ℎ, respectively. Note that 1( ) and 1(𝑇  ) are first-order (linear)
calar-valued and vector-valued polynomial spaces in a triangle (element)  . Note that 𝑉ℎ(𝑇ℎ) ⊂ 𝐻1(𝑇ℎ) and 𝑉ℎ(ℎ) ⊂ 𝐻1(ℎ).
et us also define

𝑉ℎ(𝑇ℎ, 𝜕𝐷ℎ, �̄�) ∶=
{

𝑽 ℎ ∈ 𝑉ℎ(𝑇ℎ), ∀E ∈ E𝐷
ℎ , 𝑽 ℎ|E = IE(�̄�)

}

, 𝑉ℎ(𝑇ℎ, 𝜕𝐷ℎ) ∶= 𝑉ℎ(𝑇ℎ, 𝜕𝐷ℎ, 𝟎) , (4.8)

here E𝐷
ℎ is the set of edges in 𝜕𝐷ℎ, and IE is a linear interpolation operator over the edge E with the property IE(𝟎) = 𝟎. Using

he above approximation spaces the mixed finite element form of the cloaking optimization problem (4.4) is written as:

roblem 4.2 (Finite Elements Equations). Let 𝒃(𝑖) be a body force of 𝐿2-class, 𝐮(𝑖) a boundary displacement on 𝜕𝐷(𝑖)
 of 𝐻

1
2 -class, and

𝐭(𝑖) a boundary traction on 𝜕𝑁(𝑖)
 of 𝐿2-class for 𝑖 = 1, 2,… , 𝑁 . Let the displacement field �̃�ℎ(𝑖) ∈ 𝑉ℎ(𝑇 ̃ℎ, 𝜕𝐷(𝑖)

̃ℎ, �̄�(𝑖)) be the solution
of the discretized virtual problem for the same given 𝒃(𝑖), 𝐮(𝑖), 𝐭(𝑖) for 𝑖 = 1, 2,… , 𝑁 . Find (𝜉ℎ, 𝜂ℎ,𝐮ℎ(1) ,… ,𝐮ℎ(𝑁)

, 𝜸ℎ(1) ,… ,𝐮ℎ(𝑁)
) ∈

𝑉ℎ(ℎ)×𝑉ℎ(ℎ)×𝑉ℎ(𝑇ℎ, 𝜕𝐷(1)
ℎ, �̄�(1))×…×𝑉ℎ(𝑇ℎ, 𝜕𝐷(𝑁)

ℎ, �̄�(𝑁))×𝑉ℎ(𝑇ℎ, 𝜕𝐷(1)
ℎ)×…×𝑉ℎ(𝑇ℎ, 𝜕𝐷(𝑁)

ℎ) such that, for 𝑖 = 1, 2,… , 𝑁 ,

𝑁
∑

𝑗=1
𝑤𝑗⟨⟨𝑊1ℎ (𝜉ℎ,𝐮ℎ(𝑗) , 𝜸ℎ(𝑗) ) + 𝑚1𝜉ℎ, 𝛿𝜉ℎ⟩⟩ℎ + ⟨⟨𝛼1∇𝛿𝜉ℎ,∇𝛿𝜉ℎ⟩⟩ℎ = 0, ∀𝛿𝜉ℎ ∈ 𝑉ℎ(ℎ) ,

𝑁
∑

𝑗=1
𝑤𝑗⟨⟨𝑊2ℎ (𝜂ℎ,𝐮ℎ(𝑗) , 𝜸ℎ(𝑗) ) + 𝑚2𝜂ℎ, 𝛿𝜂ℎ⟩⟩ℎ + ⟨⟨𝛼2∇𝛿𝜂ℎ,∇𝛿𝜂ℎ⟩⟩ℎ = 0 , ∀𝛿𝜂ℎ ∈ 𝑉ℎ(ℎ) ,

𝑘⟨⟨𝐮ℎ(𝑖) − �̃�(𝑖), 𝛿𝐮ℎ(𝑖) ⟩⟩̊ℎ
− ⟨⟨𝝈ℎ(𝜉ℎ, 𝜂ℎ, 𝜸ℎ(𝑖) ),∇𝛿𝐮ℎ(𝑖) ⟩⟩ℎ

= 0 , ∀𝛿𝐮ℎ(𝑖) ∈ 𝑉ℎ(𝑇ℎ, 𝜕𝐷(𝑖)
ℎ) ,

−⟨⟨𝝈ℎ(𝜉ℎ, 𝜂ℎ,𝐮ℎ(𝑖) ),∇𝛿𝜸ℎ(𝑖) ⟩⟩ℎ
+ ⟨⟨𝐛(𝑖), 𝛿𝜸ℎ(𝑖) ⟩⟩ℎ

+ ⟨⟨�̄�(𝑖), 𝛿𝜸ℎ(𝑖) ⟩⟩𝜕𝑁(𝑖)ℎ
= 0 , ∀𝛿𝜸ℎ(𝑖) ∈ 𝑉ℎ(𝑇ℎ, 𝜕𝐷(𝑖)

ℎ) .

(4.9)

4.3. Matrix formulation

Next, we discuss a matrix formulation of the finite element discretization. For the sake of simplicity of presentation, we assume
2D finite elements. However, the formulation can be used for 3D problems as well. We define the column vector representation of
a second-order tensor 𝑻 by ⌈𝑻 ⌉ ∶=

[

𝑇 11 𝑇 12 𝑇 21 𝑇 22]𝖳. Note that ⟨⟨𝒀 ,𝒁⟩⟩ = ⟨⟨⌈𝒀 ⌉, ⌈𝒁⌉⟩⟩ = ∫⌈𝒀 ⌉

𝖳
⌈𝒁⌉d𝑣 = ∫⌈𝒁⌉

𝖳
⌈𝒀 ⌉d𝑣.

Using the Lagrange basis functions of 1( ) and 1(𝑇  ), one can approximate the field variables of the weak formulation in an
element  using the following matrix relations:

𝜉 = 𝗯 𝗾𝜉 , ∇𝜉 = 𝗚 𝗾𝜉 ,

𝜂 = 𝗯 𝗾𝜂 , ∇𝜂 = 𝗚 𝗾𝜂 ,

𝐮(𝑖) = 𝗕 𝗾
𝑢(𝑖)
 , div𝐮(𝑖) = 𝗱 𝗾

𝑢(𝑖)
 ,

⌈

sym∇𝐮(𝑖)
⌉

= 𝗦 𝗾
𝑢(𝑖)
 ,

𝜸(𝑖) = 𝗕 𝗾
𝛾(𝑖)
 , div 𝜸(𝑖) = 𝗱 𝗾

𝛾(𝑖)
 ,

⌈

sym∇𝜸(𝑖)
⌉

= 𝗦 𝗾
𝛾(𝑖)
 ,

(4.10)

here the vectors 𝗾𝜉 3×1, 𝗾
𝜂
 3×1, 𝗾

𝑢(𝑖)
 6×1, and 𝗾

𝛾(𝑖)
 6×1 contain the values of degrees of freedom, i.e., the values of 𝜉, 𝜂, 𝐮(𝑖), and 𝜸(𝑖) at

he three vertices of  , respectively. The matrices 𝗯 1×3 and 𝗕 2×6 contain the Lagrange basis (shape) functions of  and 𝗚 2×3,

 1×6, and 𝗦 4×6 consist of their spatial derivatives. One can obtain the variations of (4.10) by replacing the vectors of degrees
f freedom with the vectors of arbitrary real numbers of the same size, e.g., 𝛿𝜉 = 𝗯 𝗮, where 𝗮3×1 is a vector of arbitrary real
umbers. Using the above discretized fields, we can approximate (3.25) in  in terms of degrees of freedom:

𝑊1

(

𝗾𝜉 , 𝗾
𝑢(𝑖)
 , 𝗾

𝛾(𝑖)


)

= 𝗾
𝛾(𝑖)


𝖳
𝗪1 (𝗾

𝜉
 ) 𝗾

𝑢(𝑖)
 ,

𝑊2

(

𝗾𝜂 , 𝗾
𝑢(𝑖)
 , 𝗾

𝛾(𝑖)


)

= 𝗾
𝛾(𝑖)


𝖳
𝗪2 (𝗾

𝜂
 ) 𝗾

𝑢(𝑖)
 ,

(4.11)

here the symmetric matrices 𝗪1 6×6 and 𝗪2 6×6 are defined as

𝗪1 (𝗾
𝜉
 ) = −2

3
�̊� 𝑒−(𝗯 𝗾𝜉 ) 𝗱𝖳 𝗱 + 2�̊� 𝑒−(𝗯 𝗾𝜉 ) 𝗦𝖳 𝗦 ,

𝜂 −(𝗯 𝗾𝜂 ) 𝖳
(4.12)
11

𝗪2 (𝗾 ) = �̊� 𝑒  𝗱 𝗱 .
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Next, guided by (4.5), we define the following matrices in  :

𝗞𝜉𝜉
 = ∫

(

𝑚1 𝗯
𝖳
 𝗯 + 𝛼1 𝗚

𝖳
 𝗚

)

d𝑣,

𝗞𝜂𝜂
 = ∫

(

𝑚2 𝗯
𝖳
 𝗯 + 𝛼2 𝗚

𝖳
 𝗚

)

d𝑣 ,

𝗞𝜉𝜉


(

𝗾𝜉 , 𝗾
𝑢(𝑖)
 , 𝗾

𝛾(𝑖)


)

= −∫
𝑊1

(

𝗾𝜉 , 𝗾
𝑢(𝑖)
 , 𝗾

𝛾(𝑖)


)

𝗯𝖳 𝗯 d𝑣 ,

̄𝗞𝜂𝜂


(

𝗾𝜂 , 𝗾
𝑢(𝑖)
 , 𝗾

𝛾(𝑖)


)

= −∫
𝑊2

(

𝗾𝜂 , 𝗾
𝑢(𝑖)
 , 𝗾

𝛾(𝑖)


)

𝗯𝖳 𝗯 d𝑣 ,

𝗞𝜉𝑢


(

𝗾𝜉 , 𝗾
𝛾(𝑖)


)

= ∫
𝗯𝖳 𝗾

𝛾(𝑖)


𝖳
𝗪1 (𝗾

𝜉
 ) d𝑣, 𝗞𝜉𝛾



(

𝗾𝜉 , 𝗾
𝑢(𝑖)


)

= ∫
𝗯𝖳 𝗾

𝑢(𝑖)


𝖳
𝗪1 (𝗾

𝜉
 ) d𝑣 ,

𝗞𝜂𝑢


(

𝗾𝜂 , 𝗾
𝛾(𝑖)


)

= ∫
𝗯𝖳 𝗾

𝛾(𝑖)


𝖳
𝗪2 (𝗾

𝜂
 ) d𝑣, 𝗞𝜂𝛾



(

𝗾𝜂 , 𝗾
𝑢(𝑖)


)

= ∫
𝗯𝖳 𝗾

𝑢(𝑖)


𝖳
𝗪2 (𝗾

𝜂
 ) d𝑣,

𝗞𝑢𝛾


(

𝗾𝜉 , 𝗾
𝜂


)

= −∫

(

𝗪1 (𝗾
𝜉
 ) +𝗪2 (𝗾

𝜂
 )
)

d𝑣,

𝗞𝑢𝑢
 =

{

𝑘 ∫ 𝗕𝖳
 𝗕 d𝑣, if  ∈ ̊ℎ ,

𝟎6×6 , otherwise,

𝗙𝑢

(

�̃�ℎ(𝑖)
)

=

{

𝑘 ∫ 𝗕𝖳
 �̃�ℎ(𝑖) d𝑣, if  ∈ ̊ℎ ,

𝟎6×1 , otherwise,

𝗙𝛾

(

𝐛(𝑖), 𝐭(𝑖)
)

= −∫
𝗕𝖳
 𝐛(𝑖) d𝑣 −

{

∫ 𝗕
𝖳
 𝐭(𝑖) d𝑎, if  ∈ 𝜕𝑁(𝑖)

ℎ,
𝟎6×1 , otherwise.

(4.13)

We assemble the vectors of degrees of freedom and the above matrices as

{𝗤𝜉
ℎ,𝗤

𝜂
ℎ} = �̃� ∈ℎ{𝗾

𝜉
 , 𝗾

𝜂
 } ,

{𝗤
𝑢(𝑖)
ℎ ,𝗤

𝛾(𝑖)
ℎ } = �̃� ∈ℎ

{𝗾
𝑢(𝑖)
 , 𝗾

𝛾(𝑖)
 } ,

{𝗞𝜉𝜉
ℎ ,𝗞𝜂𝜂

ℎ ,𝗞𝜉𝜉
ℎ , ̄𝗞𝜂𝜂

ℎ } = 𝗔 ∈ℎ{𝗞
𝜉𝜉
 ,𝗞𝜂𝜂

 ,𝗞𝜉𝜉
 , ̄𝗞𝜂𝜂

 } ,

{𝗞𝑢𝑢,(𝑖)
ℎ ,𝗞𝑢𝛾

ℎ ,𝗙𝑢,(𝑖)ℎ ,𝗙𝛾,(𝑖)ℎ } = 𝗔 ∈ℎ
{𝗞𝑢𝑢,(𝑖)

ℎ ,𝗞𝑢𝛾
 ,𝗙𝑢,(𝑖) ,𝗙𝛾,(𝑖) } ,

{𝗞𝜉𝑢
ℎ ,𝗞𝜉𝛾

ℎ ,𝗞𝜂𝑢
ℎ ,𝗞𝜂𝛾

ℎ } = 𝗔 ∈ℎ ,ℎ
{𝗞𝜉𝑢

 ,𝗞𝜉𝛾
 ,𝗞𝜂𝑢

 ,𝗞𝜂𝛾
 } .

(4.14)

e then define the following matrices by considering 𝑁 load cases:

Q𝑢
ℎ =

⎡

⎢

⎢

⎣

𝗤
𝑢(1)
ℎ
⋮

𝗤
𝑢(𝑁)
ℎ

⎤

⎥

⎥

⎦

, Q𝛾
ℎ =

⎡

⎢

⎢

⎣

𝗤
𝛾(1)
ℎ
⋮

𝗤
𝛾(𝑁)
ℎ

⎤

⎥

⎥

⎦

, F𝑢
ℎ =

⎡

⎢

⎢

⎢

⎣

𝑤1𝗙
𝑢
ℎ

(

�̃�ℎ(1)
)

⋮

𝑤𝑁𝗙𝑢ℎ

(

�̃�ℎ(𝑁)

)

⎤

⎥

⎥

⎥

⎦

, F𝛾
ℎ =

⎡

⎢

⎢

⎣

𝑤1𝗙
𝛾
ℎ
(

𝐛(1), 𝐭(1)
)

⋮
𝑤𝑁𝗙𝛾ℎ

(

𝐛(𝑁), 𝐭(𝑁)
)

⎤

⎥

⎥

⎦

,

K𝑢𝑢
ℎ =

⎡

⎢

⎢

⎣

𝑤1𝗞
𝑢𝑢
ℎ

⋱
𝑤𝑁𝗞𝑢𝑢

ℎ

⎤

⎥

⎥

⎦

, K𝛾𝑢
ℎ = K𝑢𝛾

ℎ =

⎡

⎢

⎢

⎢

⎣

𝑤1𝗞
𝑢𝛾
ℎ (𝗤𝜉

ℎ,𝗤
𝜂
ℎ)

⋱
𝑤𝑁𝗞𝑢𝛾

ℎ (𝗤𝜉
ℎ,𝗤

𝜂
ℎ)

⎤

⎥

⎥

⎥

⎦

,

K𝜉𝑢
ℎ (𝗤𝜉

ℎ,Q
𝛾
ℎ) =

[

𝑤1𝗞
𝜉𝑢
ℎ (𝗤𝜉

ℎ,𝗤
𝛾(1)
ℎ ) ⋯ 𝑤𝑁𝗞𝜉𝑢

ℎ (𝗤𝜉
ℎ,𝗤

𝛾(𝑁)
ℎ )

]

,

K𝜉𝛾
ℎ (𝗤𝜉

ℎ,Q
𝑢
ℎ) =

[

𝑤1𝗞
𝜉𝑢
ℎ (𝗤𝜉

ℎ,𝗤
𝑢(1)
ℎ ) ⋯ 𝑤𝑁𝗞𝜉𝑢

ℎ (𝗤𝜉
ℎ,𝗤

𝑢(𝑁)
ℎ )

]

,

K𝜂𝑢
ℎ (𝗤𝜂

ℎ,Q
𝛾
ℎ) =

[

𝑤1𝗞
𝜂𝑢
ℎ (𝗤𝜂

ℎ,𝗤
𝛾(1)
ℎ ) ⋯ 𝑤𝑁𝗞𝜂𝑢

ℎ (𝗤𝜂
ℎ,𝗤

𝛾(𝑁)
ℎ )

]

,

K𝜂𝛾
ℎ (𝗤𝜂

ℎ,Q
𝑢
ℎ) =

[

𝑤1𝗞
𝜉𝑢
ℎ (𝗤𝜂

ℎ,𝗤
𝑢(1)
ℎ ) ⋯ 𝑤𝑁𝗞𝜉𝑢

ℎ (𝗤𝜂
ℎ,𝗤

𝑢(𝑁)
ℎ )

]

,

𝗝𝜉𝜉ℎ (𝗤𝜉
ℎ,Q

𝑢
ℎ,Q

𝛾
ℎ) =

𝑁
∑

𝑗=1
𝑤𝑗𝗞

𝜉𝜉
ℎ (𝗤𝜉

ℎ,𝗤
𝑢(𝑗)
ℎ ,𝗤

𝛾(𝑗)
ℎ ) , 𝗝𝜂𝜂ℎ (𝗤𝜂

ℎ,Q
𝑢
ℎ,Q

𝛾
ℎ) =

𝑁
∑

𝑗=1
𝑤𝑗

̄𝗞𝜂𝜂
ℎ (𝗤𝜂

ℎ,𝗤
𝑢(𝑗)
ℎ ,𝗤

𝛾(𝑗)
ℎ ) .

(4.15)

ote that K𝜉𝑢
ℎ (𝗤𝜉

ℎ,Q
𝛾
ℎ)Q

𝑢
ℎ = K𝜉𝛾

ℎ (𝗤𝜉
ℎ,Q

𝑢
ℎ)Q

𝛾
ℎ, and K𝜂𝑢

ℎ (𝗤𝜂
ℎ,Q

𝛾
ℎ)Q

𝑢
ℎ = K𝜂𝛾

ℎ (𝗤𝜂
ℎ,Q

𝑢
ℎ)Q

𝛾
ℎ. We write the matrix formulation of Problem 4.2

as:

Problem 4.3 (Matrix Equation). Find Qℎ such that Kℎ(Qℎ)Qℎ = Fℎ, where

Qℎ =

⎡

⎢

⎢

⎢

⎢

𝗤𝜉
ℎ

𝗤𝜂
ℎ

Q𝑢
ℎ𝛾

⎤

⎥

⎥

⎥

⎥

, Kℎ(Qℎ) =

⎡

⎢

⎢

⎢

⎢

𝗞𝜉𝜉
ℎ 𝟎 K𝜉𝑢

ℎ (𝗤𝜉
ℎ,Q

𝛾
ℎ) 𝟎

𝟎 𝗞𝜂𝜂
ℎ K𝜂𝑢

ℎ (𝗤𝜂
ℎ,Q

𝛾
ℎ) 𝟎

𝟎 𝟎 K𝑢𝑢
ℎ K𝑢𝛾

ℎ (𝗤𝜉
ℎ,𝗤

𝜂
ℎ)

𝛾𝑢 𝜉 𝜂

⎤

⎥

⎥

⎥

⎥

, and Fℎ =

⎡

⎢

⎢

⎢

⎢

𝟎
𝟎
F𝑢
ℎ𝛾

⎤

⎥

⎥

⎥

⎥

. (4.16)
12

⎣

Qℎ⎦ ⎣
𝟎 𝟎 Kℎ (𝗤ℎ,𝗤ℎ) 𝟎

⎦ ⎣

Fℎ⎦
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Fig. 3. Cloaking of an elliptic hole (a), an elliptic cut (b), a rectangular inhomogeneity (c), and randomly distributed circular inhomogeneities (d). The blue
color shows the cloak .

Fig. 4. Symbols for the load cases.

One can show that the symmetric Jacobian matrix

[Jℎ]𝑖𝑗 =
𝜕
[

Kℎ(Qℎ)Qℎ − Fℎ
]

𝑖
𝜕[Qℎ]𝑗

, (4.17)

for the nonlinear Problem 4.3 reads

Jℎ(Qℎ) =

⎡

⎢

⎢

⎢

⎢

⎣

𝗞𝜉𝜉
ℎ + 𝗝𝜉𝜉ℎ (𝗤𝜉

ℎ,Q
𝑢
ℎ,Q

𝛾
ℎ) 𝟎 K𝜉𝑢

ℎ (𝗤𝜉
ℎ,Q

𝛾
ℎ) K𝜉𝛾

ℎ (𝗤𝜉
ℎ,Q

𝑢
ℎ)

𝟎 𝗞𝜂𝜂
ℎ + 𝗝𝜂𝜂ℎ (𝗤𝜂

ℎ,Q
𝑢
ℎ,Q

𝛾
ℎ) K𝜂𝑢

ℎ (𝗤𝜂
ℎ,Q

𝛾
ℎ) K𝜂𝛾

ℎ (𝗤𝜂
ℎ,Q

𝑢
ℎ)

K𝑢𝜉
ℎ (𝗤𝜉

ℎ,Q
𝛾
ℎ) K𝑢𝜂

ℎ (𝗤𝜂
ℎ,Q

𝛾
ℎ) K𝑢𝑢

ℎ K𝑢𝛾
ℎ (𝗤𝜉

ℎ,𝗤
𝜂
ℎ)

K𝛾𝜉
ℎ (𝗤𝜉

ℎ,Q
𝑢
ℎ) K𝛾𝜂

ℎ (𝗤𝜂
ℎ,Q

𝑢
ℎ) K𝛾𝑢

ℎ (𝗤𝜉
ℎ,𝗤

𝜂
ℎ) 𝟎

⎤

⎥

⎥

⎥

⎥

⎦

, (4.18)

where K𝑢𝜉
ℎ = (K𝜉𝑢

ℎ )𝖳, K𝑢𝜂
ℎ = (K𝜂𝑢

ℎ )𝖳, K𝛾𝜉
ℎ = (K𝜉𝛾

ℎ )𝖳, and K𝛾𝜂
ℎ = (K𝜂𝛾

ℎ )𝖳.

. Numerical results

In this section we discuss a few numerical examples of the optimization problem for isotropic cloaks in dimension two.

.1. Implementation

We have implemented a mixed finite element code in MATLAB to construct and solve the nonlinear system of algebraic equations
f Problem 4.3. Given an explicit symmetric Jacobian matrix Jℎ (4.18), one can efficiently solve Problem 4.3 using the Newton
ethod. We use MATLAB direct solver for the linear system in each Newton iteration. To solve the problem, first some numerical

alues for the control parameters 𝑚1, 𝑚2, 𝛼1, and 𝛼2 are chosen. Recall that larger values of 𝑚1 and 𝑚2 penalize large deviations of the
elastic moduli from their corresponding elastic moduli in the virtual body, whereas larger values of 𝛼1 and 𝛼2 are more preventive
of sharp gradients in the material parameters of the cloak.

We use 𝑘 as a load control parameter, which agrees with what was observed in Eq. (3.27), i.e., the term 𝑘‖𝐮 − �̃�‖ represents a
body force in the adjoint balance of linear momentum associated with the field 𝜸 (see also Eq. (3.32) for the multiple-load case). In
the load control process, we start with a very small 𝑘 and the initial guess Qℎ = [𝟎, 𝟎,U𝖳

ℎ , 𝟎]
𝖳 for the Newton method, where Uℎ is

the displacement degrees of freedom linearly solved for a domain without a cloak, which also minimizes the augmented objective
function for 𝑘 = 0. Once the Newton method has converged, we gradually increase the value of 𝑘 and use the solution as the initial
guess for the next load-control step. We keep repeating this process until the solution for the desired value of 𝑘 is obtained.

The value of 𝑘 must be carefully chosen based on each load case. For multiple-load optimization, better results can be achieved
if one works with 𝑁 different 𝑘𝑖’s to take into account the differences between load cases. As was mentioned earlier, in the general
multiple-load optimal design, each load case participates in the 𝗖-Eqs. (4.3)1,2 according to the work done by the standard forces
on the adjoint displacements, defined in (3.25). In particular, the terms 𝑊1(𝜉,𝐮(𝑖), 𝜸(𝑖)) and 𝑊2(𝜂,𝐮(𝑖), 𝜸(𝑖)) represent the work done
on the adjoint shear deformations and the adjoint changes of volume, respectively, for each load case 𝑖 = 1,… , 𝑁 . These terms
are linear in the 𝐮(𝑖)’s and 𝜸(𝑖)’s, and hence, are proportional to the external loads (enforced via either tractions or displacement
boundary conditions), as well as to the adjoint distributed loads 𝑘(𝐮(𝑖) − �̃�(𝑖)). A reasonable choice would be to normalize 𝑘 with
respect to ‖�̃�(𝑖)‖2 to obtain 𝑁 different 𝑘𝑖’s (Fachinotti et al., 2018). Another fairly reasonable choice for the normalization of 𝑘 is
to divide it by ‖𝐮(𝑖) − �̃�(𝑖)‖2 in each step. Alternatively, one can use combinations of these quantities. As the normalization is not
13

unique, we choose suitable normalizers for each load case depending on the example we are solving.
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Table 1
Efficacy of an optimal cloak in the symmetric case of a single elliptic hole. Each row corresponds to one of the six optimization loads (XT, YT,
ST, XD, YD, SD) plus the no-cloak case (NC) at the top. Each column corresponds to a service load, with the last column showing the average.
Excluding the first row and the last column, the main diagonal of the table corresponds to cases in which the optimization and service loads
are the same.

XT YT ST XD YD SD Average

NC 62.9 45.8 22.1 17.7 4.9 7.4 26.8

XT 8.4 17.6 6.8 7.8 7.1 1.7 8.2
YT 21.0 8.5 3.1 11.2 4.2 3.4 8.6
ST 24.3 18.8 1.6 13.3 14.9 2.7 12.6
XD 8.9 15.6 7.0 7.8 6.4 1.7 7.9
YD 24.7 9.1 5.6 11.8 1.5 3.9 9.4
SD 11.2 18.6 8.1 9.4 6.7 1.4 9.3

XT 10.1 9.6 2.9 8.8 4.3 2.5 6.4
MD 10.3 9.3 7.4 8.7 2.1 1.4 6.5

5.2. Examples of optimal elastic cloaks

We consider a rectangular sheet made of an isotropic linear elastic solid, homogeneous in the virtual setting, and with several
istributions of holes or inhomogeneities in the physical problem, see Fig. 3. The elastic sheet undergoes either extension in the 𝑥 or

𝑦 directions or shear in the 𝑥𝑦 plane. These deformations can be enforced either via traction or displacement boundary conditions.
No body forces are considered. In total, we consider six load cases that will be denoted as XT, YT, ST, XD, YD, SD, where the first
letter indicates the load direction (X and Y for the extension in the 𝑥 and 𝑦 directions, S for shear), and the second letter the type
of boundary conditions (T and D for traction or displacement controlled, respectively), see Fig. 4. External loads will be considered
in two different settings: (i) the design loads are the ones used in the Optimization Problem 4.1, i.e., the loading combination one
is optimizing for, and (ii) the service loads are the ones used to test each design, and test the efficacy of the cloak in terms of how
much it differs from the virtual solution. Additionally, we will be considering combinations of the traction-controlled load cases XT,
YT, ST—denoted as MT—and of the displacement-controlled load cases XD, YD, SD—denoted as MD. It should be noted that the
multiple-load combinations MT and MD are only considered in the context of design loads, while the only service loads used to test
the designs are the six cases XT, YT, ST, XD, YD, SD.

The performance of a design can be measured using the 𝐿2 distance between 𝐮 and �̃� calculated on ̊, cf. (2.2). We introduce
the normalized distance between the virtual and the physical displacements outside the cloak as

�̂� =
‖𝐮 − �̃�‖𝐿2

‖�̃�‖𝐿2
=

(

∫̊ ‖𝐮 − �̃�‖2d𝑣
∫̊ ‖�̃�‖2d𝑣

)
1
2

. (5.1)

s for multiple-load deigns, we are mainly interested in their performance under a single service load, which can still be measured
ia Eq. (5.1). However, since for the convergence plots a performance measure that takes into account a service load made of a
ombination of different loads is needed, we define:

�̂�M =
∑

𝑗
𝑤𝑗

‖𝐮 − �̃�(𝑗)‖𝐿2

‖�̃�(𝑗)‖𝐿2
. (5.2)

All the quantities are dimensionless, and are expressed with respect to a characteristic length 𝐿𝑜, and a characteristic stiffness that
e take equal to the shear modulus �̊� of the homogeneous medium, i.e., of the region ̊ outside the cloak in the physical problem.

We consider a bulk modulus �̊� = 2�̊�, and hence obtain a Young’s modulus �̊� = 18
7 �̊� ≈ 2.57�̊� and a Poisson’s ratio �̊� = 2

7 ≈ 0.29.
Lastly, it should be noticed that in the present formulation the size and the shape of the cloak are not determined as a result of

the optimization algorithm, but they are simply given as inputs of the problem. Moreover, in the following examples the areas of
the cloaks are taken to be comparable to that of the heterogeneities. To justify this choice, let us denote with || and || the areas
f the sets  and , respectively. If ||∕|| ≪ 1, then the cloak will be either highly inhomogeneous or ineffective. On the other

hand, if ||∕|| ≫ 1 the cloak will occupy a large part of the body and that would not be a desirable design either.

5.2.1. Example 1: Design of a symmetric elastic cloak for an elliptic hole
We consider an elliptic hole at the center of a rectangle of sides 𝑎 = 6𝐿𝑜 and 𝑏 = 4𝐿𝑜, with the cloak consisting of an elliptic

annulus, see Fig. 3(a). The semi-axes of the hole are 2
3𝐿𝑜 and 𝐿𝑜, while the semi-axes of the outer rim of the cloak are 4

3𝐿𝑜 and
5
3𝐿𝑜. Both combinations MT and MD have weights 𝑤X = 𝑤Y = 𝑤S = 1

3 . The coefficients in the augmented objective functions are
= 107, 𝑚1 = 𝑚2 = 𝛼1 = 𝛼2 = 1. The designs are shown in Fig. 5, while their efficacy is reported in Table 1 with respect to each

ervice load. Fig. 6 shows the stress distribution for some of the combinations in Table 1.
14
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Fig. 5. Design of the optimal cloak for a single elliptic hole. Left: Convergence in terms of the solution metric (5.1), (5.2), and of the design 𝐻1 metric (3.10).
The solution metric is normalized with respect to the no-cloak case and is expressed in percentages. Right: Distribution of the elastic moduli in the solid for
each design load.

5.2.2. Example 2: Design of an elastic cloak for an elliptic cut
We consider cloaking of a cut with the shape of a sharp semi-elliptic hole, see Fig. 3(b). In this case the object to hide is not

fully embedded in the considered medium, in the sense that it shares part of its boundary. In particular, the elliptic cut has major
semi-axis 3

2𝐿𝑜 and is centered on the middle point of the bottom boundary of the same rectangular medium considered in the
previous examples. The cut is surrounded by a half-elliptic cloak with major semi-axis of 2𝐿𝑜. We only consider the combination
MT, with weights 𝑤X = 𝑤S = 1

2 , and 𝑤Y = 0. The coefficients in the augmented objective functions are 𝑘 = 107, 𝑚1 = 𝑚2 = 2,
𝛼1 = 𝛼2 = 3. In Fig. 7 the designs for each load combination are shown. The efficacy of each design with respect to each service
load is reported in Table 2 and Fig. 8.
15
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Fig. 6. Performance of the optimal cloaks under different service loads they are optimized for, in the symmetric case of a single elliptic hole. The performance
is given in terms of the Frobenius norm of the stress. Each column represents a loading condition: XT, YT, ST, XD, YD, SD. Each row refers to virtual body,
body with no cloak, same-load design, multiple-load design MT, and multiple-load design MD.

Fig. 7. Design of a carpet cloak surrounding an elliptic cut. Left: Convergence in terms of the solution metric (5.1), (5.2), and of the design 𝐻1 metric (3.10).
The solution metric is normalized with respect to the no-cloak case and is expressed in percentages. Right: Distribution of the elastic moduli in the body for
each design load. Each row represents a design, under different optimization loads (XT, ST, MT).

5.2.3. Example 3: Design of an elastic cloak for a rectangular inhomogeneity

We consider a rectangular hard inhomogeneity inside the same rectangular region of sides 𝑎 = 6𝐿𝑜 and 𝑏 = 4𝐿𝑜 as in the
previous example, see Fig. 3(c). The inhomogeneity is assumed to have a much higher stiffness than the matrix ̊. The rectangular
inhomogeneity is rotated 45◦ with respect to the 𝑥 and 𝑦 axes, and has sides of 4

3𝐿𝑜 and 8
21𝐿𝑜, while the cloak is a rectangular

annulus of length 5
3𝐿𝑜 and width 5

7𝐿𝑜. The thickness of the rectangular annulus is 1
3𝐿𝑜 along both sides. Both combinations MT and

MD have weights 𝑤 = 𝑤 = 𝑤 = 1 . The coefficients in the augmented objective functions are 𝑘 = 107, 𝑚 = 𝑚 = 𝛼 = 𝛼 = 1.
16
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Fig. 8. Performance of the optimal cloaks under different service loads they are optimized for, in the case of a carpet cloak surrounding an elliptic cut. The
performance is given in terms of the Frobenius norm of the stress. Each column represents a loading condition: XT, ST. Each row refers to virtual body, body
with no cloak, same-load design, and multiple-load design MT.

Table 2
Efficacy of a carpet cloak. Each row corresponds to one of the
two optimization loads (XT, ST) plus the no-cloak case (NC) at
the top. Each column corresponds to a service load, with the last
column showing the average. Excluding the first row and the last
column, the main diagonal of the table corresponds to cases in
which the optimization and service loads are the same.

XT ST Average

NC 141.0 38.1 89.5

XT 14.6 4.9 9.8
ST 16.7 2.9 9.8

MT 15.1 3.6 9.4

Table 3
Efficacy of a cloak in the case of a rectangular inhomogeneity. Each row corresponds to one of the six optimization loads (XT, YT, ST, XD, YD,
SD) plus the no-cloak case (NC) at the top. Each column corresponds to a service load, with the last column showing the average. Excluding
the first row and the last column, the main diagonal of the table corresponds to cases in which the optimization and service loads are the same.

XT YT ST XD YD SD Average

NC 27.5 28.2 15.5 15.9 14.0 6.4 17.9

XT 2.6 13.6 4.9 2.4 6.4 3.1 5.5
YT 10.9 3.1 5.5 5.8 2.6 3.2 5.2
ST 16.0 25.3 1.2 6.9 12.0 2.4 10.6
XD 3.0 13.2 4.8 1.8 6.0 3.0 5.3
YD 12.2 3.2 5.1 6.5 1.9 3.1 5.3
SD 28.9 35.0 6.8 12.7 9.7 1.1 15.7

MT 4.4 5.9 2.2 3.8 4.7 2.7 4.0
MD 5.0 6.6 4.4 3.0 3.4 2.8 4.2

The eight different designs are shown in Fig. 9, while their efficacy with respect to each service load is reported in Table 3. Fig. 10
shows the stress distribution for some of the design-service load combinations.

5.2.4. Example 4: Design of an elastic cloak for a random distribution of inhomogeneities
We consider multiple circular inhomogeneities inside the same rectangular region of sides 𝑎 = 6𝐿𝑜 and 𝑏 = 4𝐿𝑜 as in the previous

example, see Fig. 3(d). The inhomogeneities are assumed to have a much higher stiffness than the matrix ̊. In particular, we consider
17
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Fig. 9. Design of a cloak surrounding a rectangular hard inhomogeneity (rotated by 45◦ with respect to the 𝑥 and 𝑦 axis). Left: Convergence in terms of
the solution metric (5.1), (5.2), and of the design 𝐻1 metric (3.10). The solution metric is normalized with respect to the no-cloak case and is expressed in
percentages. Right: Distribution of the elastic moduli in the body for each design load. Each row represents a design, under different optimization loads (XT,
ST, MT).

eight disks of different radii between 0.15𝐿𝑜 and 0.45𝐿𝑜. Each inhomogeneity is surrounded by an annular cloak of external radius
1.5 times the inner radius. Both combinations MT and MD have weights 𝑤X = 𝑤Y = 𝑤S = 1

3 . The coefficients in the augmented
objective functions are 𝑘 = 107, 𝑚1 = 𝑚2 = 𝛼1 = 𝛼2 = 1. The efficacy of each design shown in Fig. 11 is reported in Table 4 with
respect to each service load, and is shown in Fig. 12 in terms of the stress distribution.

5.3. Discussion

The performance or efficacy of a cloak, intended as the ability to hide the object it is designed for, is shown in Tables 1–4 in terms
of the quantity defined in (5.1) and expressed in percentages. It should be noticed that, compared to the optimization conditions,
some designs are more effective under service loads that they are not optimized for. This means that the minimum value of each row
in the tables is not necessarily located under the corresponding column. This occurs because the distance between the no-cloak and
18
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Fig. 10. Performance of the optimal cloaks under different service loads they are optimized for, in the case of a rectangular hard inhomogeneity. The performance
is given in terms of the Frobenius norm of the stress. Each column represents a loading condition: XT, YT, ST, XD, YD, SD. Each row refers to virtual body,
body with no cloak, same-load design, multiple-load design MT, and multiple-load design MD.

Table 4
Efficacy of a cloak in the case of randomly distributed hard inhomogeneities. Each row corresponds to one of the six optimization loads (XT, YT,
ST, XD, YD, SD) plus the no-cloak case (NC) at the top. Each column corresponds to a service load, with the last column showing the average.
Excluding the first row and the last column, the main diagonal of the table corresponds to cases in which the optimization and service loads
are the same.

XT YT ST XD YD SD Average

NC 37.4 35.7 22.7 13.8 13.3 4.5 21.2

XT 2.0 3.0 0.4 1.9 2.7 0.6 1.8
YT 2.4 2.7 0.4 2.2 2.5 0.6 1.8
ST 2.4 3.4 0.3 2.2 3.2 0.6 2.0
XD 2.8 3.2 1.4 1.7 2.7 0.6 2.0
YD 3.5 5.0 3.0 2.4 1.9 0.7 2.8
SD 2.6 3.5 0.6 2.2 2.8 0.5 2.0

MT 2.1 2.8 0.3 2.0 2.6 0.6 1.7
MD 2.7 3.4 1.6 1.9 2.3 0.5 2.1

the virtual solutions is lower for some loading modes than others, i.e., some values in the first row—showing the no-cloak data—
are much lower than others. Since we use a displacement-based objective function, this is the case for the displacement-controlled
optimization loads XD, YD, SD. However, the minimum value of each column is located in the corresponding row—the boxed values
in Tables 1, 4, 2. This means that the best performance for each service load is achieved by optimizing for the same load as expected.
This is consistent with what is expected from the optimization problem.

Assuming isotropic solids allows us to only work with two design variables 𝜇 and 𝜅. In spite of this restriction, our results are
promising, as in many cases we were able to reduce the initial difference between the physical and the virtual elastic fields to less
than 10%. The iterations were stopped once small improvements in the performance corresponded to large changes in the design, as
is shown in the convergence plots in Figs. 5, 7, 11 (where the solution metrics (5.1) and (5.2) are expressed in terms of percentage
of the no-cloak one). The example of the cloaking of a sharp elliptic cut (carpet cloak) is more challenging, as the system tends to
choose less regular distributions. For this reason, we worked with higher penalty coefficients in order to obtain more reasonable
elastic moduli distributions. The effectiveness of the designs can also be seen in the stress plots in Figs. 6, 8, 12; when compared
to the stress distributions in the virtual cases (first rows in the stress plots), the response of the designs (third, fourth, fifth rows)
are much more similar than the uncloaked case (second row). It should be emphasized that, regardless of the efficacy of a cloak,
its presence prevents the stress concentration that one observes in the no-cloak case, suggesting optimal cloaking approach as a
way to enhance the toughness of materials. This is noticeable especially in Fig. 12 for the random distribution of inhomogeneities.
Particular attention should be given to the multiple-load design. The last columns of Tables 1 and 4 show good average drop of the
cloaking metric, and hence an average improvement of the performance of the cloak, with respect to all the service loads. However,
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Fig. 11. Design of optimal cloaks surrounding randomly distributed multiple hard inhomogeneities. Left: Convergence in terms of the solution metric (5.1), (5.2),
and of the design 𝐻1 metric (3.10). The solution metric is normalized with respect to the no-cloak case and is expressed in percentages. Right: Distribution of
the elastic moduli in the body for each design load. Each row represents a design, under different optimization loads (XT, YT, ST, XD, YD, SD, MT, MD).

in Table 2 there is no significant improvement, which is due to the fact that the average of performance is a meaningful measure
only when the normalized distances (5.1) corresponding to the no-cloak solutions of different load cases are similar.

The continuum approach allows us to span the whole design space, without any restrictions due to a particular choice of the
class of lattice materials for the cloak. In other words, in designing the optimal elastic cloaks we consider all the admissible values
of 𝜇 > 0 and 𝜅 > 0. For example, in some of the cloak designs Poisson’s ratio is negative, see the right columns in Figs. 5 and 7.
This suggests the use of auxetic materials for the purposes of cloaking holes (cavities), and cracks. For engineering applications of
20
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Fig. 12. Performance of the optimal cloaks under different service loads they are optimized for, in the case of randomly distributed multiple hard inhomogeneities.
The performance is given in terms of the Frobenius norm of the stress. Each column represents a loading condition: XT, YT, ST, XD, YD, SD. Each row refers
to virtual body, body with no cloak, same-load design, multiple-load design MT, and multiple-load design MD.

elastic cloaks, the proposed optimal cloaks in this paper can be additively manufactured following data-driven methods (Wilt et al.,
2020; Wang et al., 2022), and using functionally graded auxetic lattice materials (Ren et al., 2018).

6. Conclusions

In this paper we formulated elastostatic cloaking as an optimal design problem. Similar to electromagnetic cloaking, the goal in
elastic cloaking is to make an object—a cavity, a through hole, or any type of inhomogeneity or inclusion—invisible to elastic fields.
This concealment can be achieved by surrounding the object with a cloaking device with the goal of controlling the elastic field
outside of it. Because of the unattainability of exact transformation cloaking, we propose an original formulation of optimal elastic
cloaking based on the adjoint state method, in which the balance of linear momentum is enforced as a constraint. The objective
function measures the distance between the solutions in the physical and in the virtual homogeneous elastic bodies. The cloak is
assumed to be made of isotropic inhomogeneous linear elastic materials. Hence, the design parameters are the two elastic moduli in
the cloak, namely the bulk modulus 𝜅 and the shear modulus 𝜇. In order to guarantee positive definiteness of the elasticity tensor
of the cloak, we used a change of variables. Relatively smooth variations of the elastic moduli within the cloak are enforced via a
penalization term, based on an 𝐻1 metric defined on the design space.

Variations of the objective function with respect to 𝜸 and 𝐮 give the standard and the adjoint balance equations, respectively.
Although the elastic problem is linear, variations of the design parameters 𝜂 and 𝜉 yield nonlinear equations with associated
Neumann boundary conditions. The optimization formulation is extended to multiple-load design. We used mixed finite elements to
discretize the weak formulation of the governing equations, and considered several numerical examples of optimal cloaks designed
for single and multiple loads. In spite of the restrictive isotropic assumption, the results are promising as in many cases we were able
to reduce the initial difference between the physical and the virtual elastic fields to less than 10%. Moreover, the general continuum
approach allows us to span the entire design space, and find results such as the use of auxetic materials for the cloaking of holes
and cavities.

A future extension of this work will be to include anisotropic and non-centrosymmetric solids. We believe that being able
to operate within a much larger design space would allow one to get closer to exact cloaking. Moreover, extending the present
formulation to elastodynamics will be the subject of a future communication. When considering elastic waves, not only is it necessary
to take into account combinations of loads, but it becomes fundamental to optimize with respect to multiple frequencies. Other future
extensions of our work would consist of investigating the effect of different objective functions (e.g., energy or stress-based) on the
design, and extending the present formulation to nonlinear elastostatic cloaking. Extension of the present work to cloaking in elastic
plates will also be the subject of another future communication.
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ppendix A. Lagrange multipliers in the optimization problem

In this appendix we show that a single Lagrange multiplier 𝜸 can be associated with both the equilibrium constraint and the
raction boundary condition, as was assumed in (3.4). Assuming two different Lagrange multipliers, 𝜸 for div(𝗖∇𝐮) + 𝐛, and 𝝌 for
̄ − (𝗖∇𝐮)�̂�, (3.19) is rewritten as

𝛿𝐮𝖿 = ∫
div(𝗖∇𝜸) ⋅ 𝛿𝐮 d𝑣 − ∫𝜕𝑁

(𝗖∇𝜸)�̂� ⋅ 𝛿𝐮 d𝑎 + ∫𝜕𝑁
(𝜸 − 𝝌) ⋅ (𝗖∇𝛿𝐮)�̂� d𝑎 + ∫𝜕𝑜

�̊�(∇𝐮 − ∇�̃�)�̂� ⋅ 𝛿𝐮 d𝑎 . (A.1)

or the sake of simplicity we set 𝐦 = 𝜸 − 𝝌 , and 𝐌 = 𝗖(𝐦⊗ �̂�), so that the integrand in the third term of (A.1) reads 𝐌∶∇𝛿𝐮. We
ant to show that 𝐦 = 𝟎. We also denote with 𝐏 = 𝐈− �̂�⊗ �̂� the orthogonal projection to the tangent space of 𝜕𝑁.11 Then, one can
ecompose 𝐌∶∇𝛿𝐮 as

𝐌∶∇𝛿𝐮 = 𝐌𝐏∶∇𝛿𝐮 + (𝐌�̂�) ⋅ ∇�̂�𝛿𝐮 = 𝐌∶(∇𝛿𝐮)𝐏 + (𝐌�̂�) ⋅ ∇�̂�𝛿𝐮 , (A.2)

because (∇𝛿𝐮)�̂� = ∇�̂�𝛿𝐮, and where (∇𝛿𝐮)𝐏 represents the derivatives of 𝛿𝐮 along directions tangent to 𝜕𝑁. Therefore, the third
erm on the right-hand side of (A.1) reads

∫𝜕𝑁
𝐌∶∇𝛿𝐮 d𝑎 = ∫𝜕𝑁

𝐌∶(∇𝛿𝐮)𝐏 d𝑎 + ∫𝜕𝑁
(𝐌�̂�) ⋅ ∇�̂�𝛿𝐮 d𝑎 . (A.3)

Note that on 𝜕𝑁 the field ∇�̂�𝛿𝐮 is independent from both 𝛿𝐮 and (∇𝛿𝐮)𝐏. Therefore, by the fundamental lemma of calculus of
variations, the vanishing of 𝛿𝐮𝖿 in (A.1) for arbitrary ∇�̂�𝛿𝐮 implies the vanishing of the integrand of the last term in (A.3), i.e., 𝐌�̂� = 𝟎.

his means that
[

𝗖(𝐦⊗ �̂�)
]

�̂� = 𝟎, which implies that 𝐦 = 𝟎 because of the invertibility of 𝗖. This can be seen in a chart in which
he first two coordinates are tangent and the third one is orthogonal to 𝜕𝑁. Then, the constants 𝖢𝑎3𝑏3 can be selected by extracting
he rows and columns 3, 5, 6 from the Voigt representation of 𝗖. Being a principal submatrix of an invertible matrix, it is invertible,
nd hence, 𝖢𝑎3𝑏3𝑚𝑏 = 0 implies that 𝑚𝑏 = 0.

ppendix B. Metrics and norms in the design space

For two isotropic elasticity tensors 𝗖 and 𝗖′ corresponding to the pairs (𝜉, 𝜂) and (𝜉′, 𝜂′), respectively, let us define

𝑑2(𝗖,𝗖′) = 𝑚1
[

𝜉(𝑥) − 𝜉′(𝑥)
]2 + 𝑚2

[

𝜂(𝑥) − 𝜂′(𝑥)
]2 + 𝛼1‖∇(𝜉(𝑥) − 𝜉′(𝑥))‖2 + 𝛼2‖∇(𝜂(𝑥) − 𝜂′(𝑥))‖2 , (B.1)

here 𝑚1, 𝑚2, 𝛼1, and 𝛼2 are some positive constants. Our goal is to prove that for fixed 𝑥, 𝑑(., .) is a metric. Obviously, 𝑑(𝗖,𝗖′) =
(𝗖′,𝗖), and 𝑑(𝗖,𝗖′) = 0 if and only if 𝗖 = 𝗖′. It remains to show that 𝑑 satisfies the triangular inequality. Notice that

𝑑2(𝗖,𝗖′) = 𝑚1
[

𝜉 − 𝜉′
]2 + 𝑚2

[

𝜂 − 𝜂′
]2 + 𝛼1‖∇(𝜉 − 𝜉′)‖2 + 𝛼2‖∇(𝜂 − 𝜂′)‖2

= 𝑚1
[

(𝜉 − 𝜉′′) + (𝜉′′ − 𝜉′)
]2 + 𝑚2

[

(𝜂 − 𝜂′′) + (𝜂′′ − 𝜂′)
]2 + 𝛼1‖∇(𝜉 − 𝜉′′) + ∇(𝜉′′ − 𝜉′)‖2 + 𝛼2‖∇(𝜂 − 𝜂′′) + ∇(𝜂′′ − 𝜂′)‖2

= 𝑚1(𝜉 − 𝜉′′)2 + 𝑚2(𝜂 − 𝜂′′)2 + 𝑚1(𝜉′′ − 𝜉′)2 + 𝑚2(𝜂′′ − 𝜂′)2 + 2𝑚1(𝜉 − 𝜉′′)(𝜉′′ − 𝜉′) + 2𝑚2(𝜂 − 𝜂′′)(𝜂′′ − 𝜂′)

+ 𝛼1‖∇(𝜉 − 𝜉′′)‖2 + 𝛼1‖∇(𝜉′′ − 𝜉′)‖2 + 2𝛼1∇(𝜉 − 𝜉′′) ⋅ ∇(𝜉′′ − 𝜉′)

+ 𝛼2‖∇(𝜂 − 𝜂′′)‖2 + 𝛼2‖∇(𝜂′′ − 𝜂′)‖2 + 2𝛼2∇(𝜂 − 𝜂′′) ⋅ ∇(𝜂′′ − 𝜂′)

= 𝑑2(𝗖,𝗖′′) + 𝑑2(𝗖′′,𝗖′) + 2𝑚1(𝜉 − 𝜉′′)(𝜉′′ − 𝜉′) + 2𝑚2(𝜂 − 𝜂′′)(𝜂′′ − 𝜂′)

+ 2𝛼1∇(𝜉 − 𝜉′′) ⋅ ∇(𝜉′′ − 𝜉′) + 2𝛼2∇(𝜂 − 𝜂′′) ⋅ ∇(𝜂′′ − 𝜂′) .

(B.2)

or vectors 𝐚 = (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6) and 𝐛 = (𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6) in R6, it is straightforward to show that ⟨𝐚,𝐛⟩ = 𝑚1𝑎1𝑏1 + 𝑚2𝑎2𝑏2 +
𝛼1(𝑎3𝑏3 + 𝑎4𝑏4) + 𝛼2(𝑎5𝑏5 + 𝑎6𝑏6) is an inner product.12 The Cauchy–Schwarz inequality states that ⟨𝐚,𝐛⟩2 ≤ ⟨𝐚, 𝐚⟩⟨𝐛,𝐛⟩. Let us define

11 As an orthogonal projection, 𝐏 satisfies 𝐏𝐯 ⋅ 𝐰 = 𝐯 ⋅ 𝐏𝐰. Moreover, it can be used to decompose dot products as 𝐯 ⋅ 𝐰 = 𝐏𝐯 ⋅ 𝐰 + 𝑣𝑛𝑤𝑛 = 𝐯 ⋅ 𝐏𝐰 + 𝑣𝑛𝑤𝑛. This
extends to all contractions, e.g., 𝐀 ∶ 𝐁 = 𝐀𝐏 ∶ 𝐁 + 𝐀�̂� ⋅ 𝐁�̂� = 𝐀 ∶ 𝐁𝐏 + 𝐀�̂� ⋅ 𝐁�̂�.

12 This is for 2D. In 3D, for vectors 𝐚 = (𝑎1 , 𝑎2 , 𝑎3 , 𝑎4 , 𝑎5 , 𝑎6 , 𝑎7 , 𝑎8) and 𝐛 = (𝑏1 , 𝑏2 , 𝑏3 , 𝑏4 , 𝑏5 , 𝑏6 , 𝑏7 , 𝑏8) in R8, ⟨𝐚,𝐛⟩ = 𝑚1𝑎1𝑏1 + 𝑚2𝑎2𝑏2 + 𝛼1(𝑎3𝑏3 + 𝑎4𝑏4 + 𝑎5𝑏5) +
22

2(𝑎6𝑏6 + 𝑎7𝑏7 + 𝑎8𝑏8) is the inner product.
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𝐚 = (𝜉− 𝜉′′, 𝜂− 𝜂′′, (𝜉− 𝜉′′),1, (𝜉− 𝜉′′),2, (𝜂− 𝜂′′),1, (𝜂− 𝜂′′),2), and 𝐛 = (𝜉′′ − 𝜉′, 𝜂′′ − 𝜂′, (𝜉′′ − 𝜉′),1, (𝜉′′ − 𝜉′),2, (𝜂′′ − 𝜂′),1, (𝜂′′ − 𝜂′),2).13 Notice
hat

⟨𝐚,𝐛⟩ = 𝑚1(𝜉 − 𝜉′′)(𝜉′′ − 𝜉′) + 𝑚2(𝜂 − 𝜂′′)(𝜂′′ − 𝜂′) + 𝛼1∇(𝜉 − 𝜉′′) ⋅ ∇(𝜉′′ − 𝜉′) + 𝛼2∇(𝜂 − 𝜂′′) ⋅ ∇(𝜂′′ − 𝜂′) ,

⟨𝐚, 𝐚⟩ = 𝑚1(𝜉 − 𝜉′′)2 + 𝑚2(𝜂 − 𝜂′′)2 + 𝛼1‖∇(𝜉 − 𝜉′′)‖2 + 𝛼2‖∇(𝜂 − 𝜂′′)‖2 ,

⟨𝐛,𝐛⟩ = 𝑚1(𝜉′′ − 𝜉′)2 + 𝑚2(𝜂′′ − 𝜂′)2 + 𝛼1‖∇(𝜉′′ − 𝜉′)‖2 + 𝛼2‖∇(𝜂′′ − 𝜂′)‖2 .

(B.3)

he Cauchy–Schwarz inequality implies that
[

𝑚1(𝜉 − 𝜉′′)(𝜉′′ − 𝜉′) + 𝑚2(𝜂 − 𝜂′′)(𝜂′′ − 𝜂′) + 𝛼1∇(𝜉 − 𝜉′′) ⋅ ∇(𝜉′′ − 𝜉′) + 𝛼2∇(𝜂 − 𝜂′′) ⋅ ∇(𝜂′′ − 𝜂′)
] 2

≤
[

𝑚1(𝜉 − 𝜉′′)2 + 𝑚2(𝜂 − 𝜂′′)2 + 𝛼1‖∇(𝜉 − 𝜉′′)‖2 + 𝛼2‖∇(𝜂 − 𝜂′′)‖2
]

×
[

𝑚1(𝜉′′ − 𝜉′)2 + 𝑚2(𝜂′′ − 𝜂′)2 + 𝛼1‖∇(𝜉′′ − 𝜉′)‖2 + 𝛼2‖∇(𝜂′′ − 𝜂′)‖2
]

= 𝑑2(𝗖,𝗖′′)𝑑2(𝗖′′,𝗖′) .

(B.4)

hus

𝑚1(𝜉 − 𝜉′′)(𝜉′′ − 𝜉′) + 𝑚2(𝜂 − 𝜂′′)(𝜂′′ − 𝜂′) + 𝛼1∇(𝜉 − 𝜉′′) ⋅ ∇(𝜉′′ − 𝜉′) + 𝛼2∇(𝜂 − 𝜂′′) ⋅ ∇(𝜂′′ − 𝜂′) ≤ 𝑑(𝗖,𝗖′′) 𝑑(𝗖′′,𝗖′) . (B.5)

herefore
𝑑2(𝗖,𝗖′) = 𝑑2(𝗖,𝗖′′) + 𝑑2(𝗖′′,𝗖′) + 2𝑚1(𝜉 − 𝜉′′)(𝜉′′ − 𝜉′) + 2𝑚2(𝜂 − 𝜂′′)(𝜂′′ − 𝜂′)

+ 2𝛼1∇(𝜉 − 𝜉′′) ⋅ ∇(𝜉′′ − 𝜉′) + 2𝛼2∇(𝜂 − 𝜂′′) ⋅ ∇(𝜂′′ − 𝜂′)

≤ 𝑑2(𝗖,𝗖′′) + 𝑑2(𝗖′′,𝗖′) + 2𝑑(𝗖,𝗖′′) 𝑑(𝗖′′,𝗖′) .

(B.6)

his implies that 𝑑(𝗖,𝗖′) ≤ 𝑑(𝗖,𝗖′′) + 𝑑(𝗖′′,𝗖′), and hence 𝑑(., .) defines a metric for a fixed 𝑥. From (3.10), notice that

𝑑2𝗖(𝗖,𝗖
′) = ∫

𝑑2(𝗖(𝑥),𝗖′(𝑥)) d𝑣 ≤ ∫
𝑑2(𝗖(𝑥),𝗖′′(𝑥)) d𝑣 + ∫

𝑑2(𝗖′′(𝑥),𝗖′(𝑥)) d𝑣 + 2∫
𝑑(𝗖(𝑥),𝗖′′(𝑥)) 𝑑(𝗖′′(𝑥),𝗖′(𝑥)) d𝑣 . (B.7)

sing the Cauchy–Schwarz inequality
(

∫
𝑑(𝗖(𝑥),𝗖′′(𝑥)) 𝑑(𝗖′′(𝑥),𝗖′(𝑥)) d𝑣

)2
≤ ∫

𝑑2(𝗖(𝑥),𝗖′′(𝑥)) d𝑣∫
𝑑2(𝗖′′(𝑥),𝗖′(𝑥)) d𝑣 = 𝑑2𝗖(𝗖,𝗖

′′) 𝑑2𝗖(𝗖
′,𝗖′) . (B.8)

hus, ∫ 𝑑(𝗖(𝑥),𝗖
′′(𝑥)) 𝑑(𝗖′′(𝑥),𝗖′(𝑥)) d𝑣 ≤ 𝑑𝗖(𝗖,𝗖′′) 𝑑𝗖(𝗖′,𝗖′). Substituting this back into (B.7), one concludes that 𝑑𝗖(𝗖,𝗖′) ≤

𝗖(𝗖,𝗖′′) + 𝑑𝗖(𝗖′′,𝗖′), and hence 𝑑𝗖(., .) is a metric.
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