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A B S T R A C T

In this paper, we present a large-deformation formulation of the mechanics of remodeling.
Remodeling is anelasticity with an internal constraint—material evolutions that are mass and
volume-preserving. In this special class of material evolutions, the explicit time dependence of
the energy function is via one or more remodeling tensors that can be considered as internal
variables of the theory. The governing equations of remodeling solids are derived using a
two-potential approach and the Lagrange–d’Alembert principle. We consider both isotropic and
anisotropic solids and derive their corresponding remodeling equations. We study a particular
remodeling of fiber-reinforced solids in which the fiber orientation is time-dependent in the
reference configuration—𝑆𝑂(3)-remodeling. We define an additional remodeling energy, which is
motivated by the energy spent in collagen fiber-reinforced living systems to remodel to enhance
stiffness or strength in the direction of loading. We consider the examples of a solid reinforced
with either one or two families of reorienting fibers and derive their remodeling equations.
This is a generalization of some of the proposed remodeling equations in the literature. We
study three examples of material remodeling, namely finite extensions and torsion of solid
circular cylinders, which are universal deformations for incompressible isotropic solids and
certain anisotropic solids. We consider both displacement and force-control loadings. Detailed
parametric studies are included for the effects of various material and loading parameters on
fiber remodeling. It is observed that during remodeling, there is a competition between the
action of the internal strain energy function and the remodeling energy. For a given material,
a remodeling process dominated by strain energy works to align fibers in a direction that
minimizes strain energy. On the other hand, a remodeling process dominated by the remodeling
energy aligns fibers in the direction of the maximum principal strain according to a constitutive
choice. We finally linearize the governing equations of the remodeling theory and derive those
of linear remodeling mechanics.

. Introduction

The earliest study of remodeling goes back to the nineteenth century and the work of Wolff (1870, 1873) who suggested that bone
ptimizes its mechanical properties by remodeling to maximize its resistance to the load—Wolff’s law (see Ambrosi et al. (2019) for
detailed historical account of the theories of growth and remodeling). Remodeling, growth, and aging are terms that are often used

nterchangeably in the literature to describe the evolution of various material properties like mass density, stiffness, strength, or the
atural stress-free configuration. The earliest continuum mechanics-based model for remodeling—theory of adaptive elasticity—is due
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to Cowin and collaborators (Cowin and Hegedus, 1976; Hegedus and Cowin, 1976; Cowin and Nachlinger, 1978). Some researchers
have proposed to use the term remodeling to describe the material evolution only when the mass density is not evolving (Ambrosi
et al., 2011). However, the mechanics of a material with evolving mechanical properties, e.g., stiffness, is typically described very
differently from those of a material with an evolving natural configuration. The evolution of natural configuration is usually modeled
by introducing a time-dependent internal variable (‘remodeling tensor’). In this work, we follow Epstein (2009) to define remodeling
as the evolution of the natural configuration under conditions of constant mass density and constant mechanical properties. Such
an evolution may result from the growth and atrophy processes at smaller length scales, but at continuum length scales, we assume
they only contribute to an evolution of the stress-free state. Thus, we construct a macroscopic continuum framework to describe the
mechanics of remodeling materials.

Remodeling still lacks a general mechanics framework. Part of the challenge in developing a general framework is that in
iological materials—for which remodeling is most relevant, although natural state evolution without growth can occur in other
aterials—various energy generation and dissipation processes are occurring at the cellular level that are difficult to model at the

ontinuum level. Most of the work in the literature utilizes empirical relations to describe the evolution of a remodeling tensor based
n various experimental observations. Nevertheless, one concept that is often used to describe evolution laws for remodeling tensors
s the physiological principle of homeostasis in living systems. Homeostasis is the state of steady internal physical and chemical
onditions, e.g., body temperature and 𝑝𝐻 , maintained by a living system—a stable equilibrium for the body. It is hypothesized to
e the central motivation for all organic action. Hence, it has been proposed that a living body remodels to achieve homeostatic
tress, which is a preferred value of the stress field regulated through growth and remodeling during regular physiological
onditions (Goriely, 2017).2 A linear homeostasis law for a remodeling tensor

𝑟
𝐅 may look like

𝑟̇
𝐅(𝑋, 𝑡) = ⋅[𝝈(𝐅,

𝑟
𝐅;𝑋, 𝑡)−𝝈∗(𝑋)], where

is a fourth-order tensor representing essentially the resistance to remodel, 𝝈 is the Cauchy stress, and 𝝈∗ is the homeostatic value
f the Cauchy stress. However, in various pathological conditions and during rapid and large changes in mechanical characteristics,
omeostatic principle is violated (Goriely, 2017). Hence, its validity is questionable.

We next provide a brief description of a few specific approaches to describe remodeling in various problems (for a comprehensive
eview of the literature until the mid-1990s see Taber (1995)). Driessen et al. (2003, 2004) proposed two models for the
eorientation of collagen fibers in aortic heart valve and arterial walls which are known to respond to internal pressure by
emodeling (Rachev, 1997). Both models utilize an empirical first-order rate equation for remodeling that does not depend on
ny material property. In the first model, they proposed that fibers reorient to align themselves with the positive principal strain
irection. However, they found that this model is not capable of describing the typical helical architecture of collagen fibers in
rteries. So, in the second model, they proposed that fibers instead align with ‘‘preferred directions’’ in between principal stretch
irections. The preferred directions are independent of the initial fiber orientation and depend only on the magnitude of the principal
tretch. For large values of stretch, the preferred directions in their model align with the principal directions of stretch. Hariton et al.
2007) proposed a similar model but one where fibers reorient according to the principal stress directions.

Epstein (2009, 2015) clearly distinguished between remodeling and other types of material evolution, e.g., aging and pure
rowth. He defined a ‘material implant’ transformation (we will call it ‘remodeling tensor’) and defined the energy function of
remodeling body using the material implant and an initial energy function. He also studied the effect of the material implant

n the symmetry group of a remodeling material. In particular, he showed that under material remodeling, the material symmetry
roup remains essentially unchanged (more precisely, the symmetry group at time 𝑡 is conjugate to that at time 𝑡 = 0 through the
emodeling tensor). He defined morphogenesis to be an aging process that involves a change in the material symmetry group.

Melnik and Goriely (2013) considered an incompressible elastic cuboid that is reinforced by two families of mechanically
quivalent fibers. The cuboid is under uniform far-field normal stresses. Assuming that the fibers reorient themselves along the
irection of maximum principal stretch (Menzel, 2005), they observed that fibers slowly reorient towards the direction of the larger
oad. They also showed that the final fiber orientations depend on the applied loads but not on the initial fiber orientations.

Grillo et al. (2016) and Di Stefano et al. (2019) presented a model for porous biological systems in which the remodeling tensor
volves as a function of the stress. Motivated by the similarity between the anelastic processes of remodeling and plasticity, they
ssumed that the remodeling tensor behaves like a plastic strain in response to the stress. Moreover, in a separate work, Grillo et al.
2018) derived motivation from the evolution of the material natural state in various phase-change phenomena to describe the
eorientation of tissue fibers in response to external loading with the Allen–Cahn type of partial differential equations. Allen–Cahn
pproach to describing a phase change can be thought of as a balance of linear momentum coupled with a balance of generalized or
onfigurational forces (Fried and Gurtin, 1994; Gurtin, 1996). The configurational forces act as driving forces for remodeling. Grillo
t al. (2018) chose their remodeling internal variable as the mean angle of the fibers and described the free energy change upon
emodeling through a remodeling free energy density. Topol et al. (2019) considered a hollow cylinder made of an incompressible
olid with two families of mechanically equivalent fibers in a symmetric helical arrangement. They studied remodeling under a
ime-dependent inflation. They defined a fiber survival kernel that models fiber creation and dissolution rates; see also Topol et al.
2014, 2017).

Chudnovsky and Preston (1996, 2001) attempted a geometric modeling for material aging. They considered a four-dimensional
aterial manifold whose metric can evolve with time and somehow model the change in the material properties of the body.

t is unclear if there is any benefit in using a four-dimensional setting as the time parameters in the material and the current

2 In the last chapter of the monograph (Goriely, 2017) ten challenges of the mechanics of growth are listed. The present paper contributes to problems
2

elated to Challenges #3 and #10.
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configurations are assumed to be equal. In order to find the dynamics of the material metric, they used a variational approach
and assumed a Lagrangian density that explicitly depends on the material metric. The Euler–Lagrange equations corresponding to
the variation of the material metric are called aging equations. A metric defines local distances, and a material metric corresponds
to natural distances in the body. A time-dependent metric has been used in anelasticity since the seminal works of Eckart (1948)
and Kondo (1949, 1950).3 One may wonder if using a time-dependent material metric is the natural object that models aging and
whether it would be possible to differentiate anelasticity from aging in such a model.

This paper is organized as follows. In Section 2, we describe the kinematics and constitutive equations of remodeling. This is done
starting from a multiplicative decomposition of the deformation gradient into an elastic and a remodeling deformation gradient,
which is volume preserving. Material symmetry is discussed, and the constitutive equations are written explicitly for isotropic,
transversely isotropic, orthotropic, and monoclinic solids. A two-potential approach is assumed, where energy storage and dissipation
are described through two scalar potentials. The dissipation potential is taken to be convex in the rate of remodeling tensor. The
action of the symmetry group on an arbitrary dissipation potential is discussed. An additional mode of energy storage is identified
that we call remodeling energy. The remodeling energy is defined as quantifying the tendency of a material to evolve in response to
he local state of strain or stress. Balance laws are derived in Section 3 using a two-potential approach and the Lagrange–d’Alembert
rinciple. This gives the balance of linear momentum and a remodeling kinetic equation. We explicitly write the remodeling equation
or isotropic, transversely isotropic, orthotropic, and monoclinic solids. We also derive the remodeling equation, assuming that
emodeling involves only the reorientation of fibers in an isotropic matrix. We consider both a single family of fibers and two
amilies of fibers that are neither necessarily orthogonal nor mechanically equivalent. The first and second laws of thermodynamics
re briefly discussed, and it is shown that convexity of the dissipation potential in the rate of remodeling tensor ensures that the
econd law of thermodynamics is satisfied. In Section 4, three examples of material remodeling are carefully studied. The first
xample is the finite extension of a solid circular bar reinforced by helical fibers. In the second example, two families of fibers are
onsidered for the same bar. The third example is the finite torsion of the bar in Example 1. These are all examples of universal
eformations. The governing equations of the nonlinear theory are linearized with respect to an initial stress-free configuration in
ection 5. Conclusions are given in Section 6.

. Material remodeling

.1. Kinematics

otion, reference, and current configurations. Let us consider a body that is made of a solid that is undergoing a material evolution.
material evolution can be any time-dependent change in the reference configuration of the body. The body is identified with an

mbedded 3-submanifold of the Euclidean ambient space  and is denoted by . Motion of the body is a one-parameter family of
maps 𝜑𝑡 ∶  → 𝑡 ⊂ , where 𝑡 = 𝜑𝑡() is the current configuration of the body (more precisely, motion is a curve 𝑡 ↦ 𝜑𝑡 in the
space of all configurations of ). A material point 𝑋 ∈  is mapped to 𝑥 = 𝑥(𝑋, 𝑡) = 𝜑𝑡(𝑋) ∈ 𝑡.

mbient space metric. In a body, deformation is understood as the change of local distances between material points. An elastic
eformation is locally measured with respect to a local stress-free state. The body deforms in the Euclidean ambient space, which
as the flat metric 𝐠. With respect to a (curvilinear) coordinate system {𝑥𝑎} the metric has the representation 𝐠 = 𝑔𝑎𝑏 𝑑𝑥𝑎 ⊗ 𝑑𝑥𝑏.
or example, with respect to the cylindrical coordinates {𝑟, 𝜃, 𝑧} this representation reads: 𝐠 = 𝑑𝑟 ⊗ 𝑑𝑟 + 𝑟2𝑑𝜃 ⊗ 𝑑𝜃 + 𝑑𝑧 ⊗ 𝑑𝑧. If
𝑥𝑎} are the Cartesian coordinates, 𝐠 = 𝛿𝑎𝑏 𝑑𝑥𝑎 ⊗ 𝑑𝑥𝑏 = 𝑑𝑥1 ⊗ 𝑑𝑥1 + 𝑑𝑥2 ⊗ 𝑑𝑥2 + 𝑑𝑥3 ⊗ 𝑑𝑥3. The metric tensor on a given tangent
pace 𝑇𝑥 is used to calculate the dot product of vectors. More specifically, given two vectors 𝐮 ,𝐰 ∈ 𝑇𝑥, their dot product is
enoted by ⟨𝐮,𝐰⟩𝐠 = 𝑢𝑎𝑤𝑏 𝑔𝑎𝑏. The inverse of the spatial metric is denoted as 𝐠♯ with components 𝑔𝑎𝑏 such that 𝑔𝑎𝑐𝑔𝑐𝑏 = 𝛿𝑎𝑏 . A metric
nduces natural isomorphisms between the tangent space and the cotangent space, namely the flat operator that maps a vector to
ts corresponding co-vector (1-form)

♭ ∶ 𝑇𝑥 ⟶ 𝑇 ∗
𝑥 

𝐰 = 𝑤𝑎 𝜕
𝜕𝑥𝑎

⟼ 𝐰♭ = 𝑔𝑎𝑏𝑤
𝑏 𝑑𝑥𝑎 ,

(2.1)

nd the sharp operator that maps a co-vector (1-form) to its corresponding vector

♯ ∶ 𝑇 ∗
𝑥  ⟶ 𝑇𝑥

𝝎 = 𝜔𝑎 𝑑𝑥
𝑎 ⟼ 𝝎♯ = 𝑔𝑎𝑏𝜔𝑏

𝜕
𝜕𝑥𝑎

.
(2.2)

3 For bulk growth, a detailed description can be seen in Yavari (2010). For accretion and ablation (surface growth), see Sozio and Yavari (2017, 2019) and
3

radhan and Yavari (2023).



Journal of the Mechanics and Physics of Solids 181 (2023) 105449A. Kumar and A. Yavari

s
e
d
p

C
f
c
t
w

a

w

D
𝐅
t

v

T

T

Material metric. When a body is stress-free in the Euclidean ambient space, the metric 𝐠 induces the Euclidean metric 𝐆 on . In this
tate, the natural distances in the body are those that are seen by an observer in the Euclidean space. In the presence of anelastic
ffects, remodeling, aging, etc., the natural distances in the body may differ from those seen by the Euclidean observer. The natural
istances are measured using a material metric 𝐆 that is non-flat, in general, and explicitly or implicitly depends on the non-elastic
rocess that the body is undergoing. In a material (curvilinear) coordinate system {𝑋𝐴}, the material metric has the representation

𝐆 = 𝐺𝐴𝐵 𝑑𝑋𝐴⊗𝑑𝑋𝐵 . For example, if {𝑋𝐴} are Cartesian coordinates 𝐆 = 𝛿𝐴𝐵 𝑑𝑋𝐴⊗𝑑𝑋𝐵 = 𝑑𝑋1⊗𝑑𝑋1 +𝑑𝑋2⊗𝑑𝑋2 +𝑑𝑋3⊗𝑑𝑋3.
As another example, in spherical coordinates {𝑅,𝛩,𝛷}, 𝐆 = 𝑑𝑅⊗𝑑𝑅+𝑅2 𝑑𝛩⊗𝑑𝛩+𝑅2 sin2 𝛩𝑑𝛷⊗𝑑𝛷. The flat and sharp operators
corresponding to the material metric are defined similarly to (2.1) and (2.2). The natural volume element of the Riemannian manifold
(,𝐆) at 𝑋 ∈  is denoted by 𝑑𝑉 (𝑋). The corresponding volume element in the current configuration at 𝑥 = 𝜑(𝑋) ∈  is denoted by
𝑑𝑣(𝑥). The Jacobian of deformation relates the deformed and undeformed Riemannian volume elements as 𝑑𝑣(𝑥) = 𝐽𝑑𝑉 (𝑋), where4

𝐽 =
√

det 𝐠
det𝐆

det 𝐅 . (2.3)

ovariant derivatives. On a general manifold, vector fields cannot be intrinsically differentiated (an intrinsic derivative of a tensor
ield is another tensor field independent of coordinates) unless the manifold is equipped with an extra structure—an affine
onnection. For a Riemannian manifold, there is a unique natural connection—the Levi-Civita connection (natural in the sense
hat it is metric compatible and has vanishing torsion, i.e., it is symmetric). Let us denote the Levi-Civita connections associated
ith the metrics 𝐆 and 𝐠 by ∇𝐆 and ∇𝐠, respectively. For example, given vector fields 𝐔,𝐖 ∈ 𝑇, and 𝐮,𝐰 ∈ 𝑇, the covariant

derivative of 𝐖 along 𝐔, and the covariant derivative of 𝐰 along 𝐮 are denoted as ∇𝐆
𝐔𝐖 and ∇𝐠

𝐮𝐰, respectively. With respect to the
local coordinate charts {𝑋𝐴} and {𝑥𝑎} they have components 𝑊 𝐴

|𝐵 𝑈𝐵 , and 𝑤𝑎
|𝑏 𝑢𝑏, respectively, where

𝑊 𝐴
|𝐵 = 𝜕𝑊 𝐴

𝜕𝑋𝐵 + 𝛤𝐴𝐵𝐶 𝑊 𝐶 , 𝑤𝑎
|𝑏 =

𝜕𝑤𝑎

𝜕𝑥𝑏
+ 𝛾𝑎𝑏𝑐 𝑤𝑐 , (2.4)

nd 𝛤𝐴𝐵𝐶 and 𝛾𝑎𝑏𝑐 are Christoffel symbols of ∇𝐆 and ∇𝐠, respectively, and have the following relations with the metrics: 𝛾𝑎𝑏𝑐 =
1
2 𝑔

𝑎𝑘 (𝑔𝑘𝑏,𝑐 + 𝑔𝑘𝑐,𝑏 − 𝑔𝑏𝑐,𝑘
)

, and 𝛤𝐴𝐵𝐶 = 1
2𝐺

𝐴𝐾 (

𝐺𝐾𝐵,𝐶 + 𝐺𝐾𝐶,𝐵 − 𝐺𝐵𝐶,𝐾
)

.

Velocity and acceleration. The material velocity is a vector field 𝐕 ∶  × R+ → 𝑇, defined as 𝐕(𝑋, 𝑡) = 𝜕𝜑(𝑋,𝑡)
𝜕𝑡 ∈ 𝑇𝜑𝑡(𝑋), and

in components, 𝑉 𝑎(𝑋, 𝑡) = 𝜕𝜑𝑎

𝜕𝑡 (𝑋, 𝑡). We write 𝐕𝑡(𝑋) = 𝐕(𝑋, 𝑡). The spatial velocity is defined as 𝐯𝑡(𝑥) = 𝐕𝑡◦𝜑−1
𝑡 (𝑥) ∈ 𝑇𝑥,

here 𝑥 = 𝜑𝑡(𝑋). Thus, 𝐯 ∶ 𝜑𝑡() × R+ → 𝑇. The convected velocity is defined as VVV 𝑡 = 𝜑∗
𝑡 𝐯𝑡 = 𝑇𝜑−1

𝑡 ◦𝐯𝑡◦𝜑𝑡 = 𝐅−1 ⋅ 𝐕.5 The
material acceleration is defined as 𝐀(𝑋, 𝑡) = 𝐷𝐠

𝑡 𝐕(𝑋, 𝑡) = ∇𝐠
𝐕(𝑋,𝑡)𝐕(𝑋, 𝑡) ∈ 𝑇𝜑𝑡(𝑋), where 𝐷𝐠

𝑡 is the covariant derivative along
the curve 𝜑𝑡(𝑋) in . In components, 𝐴𝑎 = 𝜕𝑉 𝑎

𝜕𝑡 + 𝛾𝑎𝑏𝑐𝑉 𝑏𝑉 𝑐 . The spatial acceleration is defined as 𝐚𝑡(𝑥) = 𝐀𝑡◦𝜑−1
𝑡 (𝑥) ∈ 𝑇𝑥. In

components, 𝑎𝑎 = 𝜕𝑣𝑎

𝜕𝑡 + 𝜕𝑣𝑎

𝜕𝑥𝑏 𝑣
𝑏 + 𝛾𝑎𝑏𝑐𝑣𝑏𝑣𝑐 . Equivalently, the spatial acceleration can be expressed as the material time derivative of

𝐯, i.e., 𝐚 = 𝐯̇ = 𝜕𝐯
𝜕𝑡 + ∇𝐠

𝐯𝐯. The convected acceleration is defined as (Simo et al., 1988)

AAA 𝑡 = 𝜑∗
𝑡 (𝐚𝑡) =

𝜕VVV 𝑡
𝜕𝑡

+ ∇
𝜑∗𝑡 𝐠
VVV 𝑡

VVV 𝑡 =
𝜕VVV 𝑡
𝜕𝑡

+ ∇𝐂♭
VVV 𝑡

VVV 𝑡 . (2.5)

eformation gradient. The so-called deformation gradient, which is the derivative of the deformation mapping is denoted by
(𝑋, 𝑡) = 𝑇𝜑𝑡(𝑋) ∶ 𝑇𝑋 → 𝑇𝑥𝑡, where 𝑇𝑋 and 𝑇𝑥𝑡 are the tangent spaces of  at 𝑋 and 𝑡 at 𝑥, respectively. With respect
o local coordinate charts {𝑋𝐴} and {𝑥𝑎} for  and , respectively, 𝐅 has the following representation

𝐅(𝑋, 𝑡) = 𝜕𝜑𝑎(𝑋, 𝑡)
𝜕𝑋𝐴

𝜕
𝜕𝑥𝑎

⊗ 𝑑𝑋𝐴 . (2.6)

The adjoint of deformation gradient 𝐅⋆(𝑋, 𝑡) ∶ 𝑇 ∗
𝑥 𝑡 → 𝑇 ∗

𝑋 is defined such that

⟨𝜶,𝐅𝐖⟩ = ⟨𝐅⋆𝜶,𝐖⟩ , ∀𝐖 ∈ 𝑇𝑋 , 𝜶 ∈ 𝑇 ∗
𝑥 𝑡 , (2.7)

where 𝑇 ∗
𝑋 and 𝑇 ∗

𝑥 𝑡 are the co-tangent spaces of  and 𝑋 and 𝑡 at 𝑥, respectively, and ⟨., .⟩ is the natural pairing of 1-forms and
ectors, e.g., ⟨𝝎,𝐰⟩ = 𝜔𝑎𝑤𝑎. 𝐅⋆ has the following coordinate representation

𝐅⋆(𝑋, 𝑡) = 𝜕𝜑𝑎(𝑋, 𝑡)
𝜕𝑋𝐴 𝑑𝑋𝐴 ⊗ 𝜕

𝜕𝑥𝑎
. (2.8)

he transpose of the deformation gradient 𝐅𝖳(𝑋, 𝑡) ∶ 𝑇𝑥𝑡 → 𝑇𝑋 is defined as

⟨𝐅𝐔,𝐰⟩𝐠 = ⟨𝐔,𝐅𝖳𝐰⟩𝐆 , ∀𝐔 ∈ 𝑇𝑋 , 𝐰 ∈ 𝑇𝑥 . (2.9)

his implies that in components
(

𝐹 𝖳
)𝐴

𝑎 = 𝐺𝐴𝐵𝐹 𝑏𝐵 𝑔𝑏𝑎, or 𝐅𝖳 = 𝐆♯𝐅⋆𝐠.

4 The natural volume form of the Riemannian manifold (,𝐆) is a 3-form that at 𝑋 ∈  is denoted by 𝝁𝐆(𝑋) and in a coordinate chart {𝑋𝐴} has the
representation 𝝁𝐆(𝑋) =

√

det𝐆 𝑑𝑋1 ∧𝑑𝑋2 ∧𝑑𝑋3, where ∧ is the wedge product of differential forms. The corresponding volume form in the current configuration
at 𝑥 = 𝜑(𝑋) ∈  is denoted by 𝝁𝐠(𝑥) and in a coordinate chart {𝑥𝑎} has the representation 𝝁𝐠(𝑥) =

√

det𝐆 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3. The Jacobian of deformation relates
the deformed and undeformed Riemannian volume forms as 𝜑∗𝝁𝐠 = 𝐽 𝝁𝐆.

5 For linearization purposes the convected form of the balance of linear momentum is convenient and this is our motivation for reviewing the convected
quantities.
4
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Other measures of strain. There are different measures of strain in nonlinear elasticity and anelasticity (Marsden and Hughes, 1983;
Ogden, 1997; Goriely, 2017; Yavari and Sozio, 2023). Consider two vectors in the current (deformed) configuration 𝐮,𝐰 ∈ 𝑇𝑥.
Their dot product is calculated using the ambient space metric 𝐠 as

⟨𝐮,𝐰⟩𝐠 = ⟨𝐅𝐔,𝐅𝐖⟩𝐠 = ⟨𝐔,𝐖⟩𝐅∗𝐠 , (2.10)

where 𝐅∗𝐠 = 𝐅⋆𝐠𝐅 = 𝜑∗𝐠 = 𝐂♭ is the pulled-back metric or the right Cauchy–Green strain. To clarify this definition, in components

⟨𝐮,𝐰⟩𝐠 = 𝑢𝑎𝑤𝑏𝑔𝑎𝑏 = (𝐹 𝑎𝐴𝐹 𝑏𝐵 𝑔𝑎𝑏)𝑈𝐴𝑊 𝐵 = 𝐶𝐴𝐵𝑈
𝐴𝑊 𝐵 , (2.11)

nd hence 𝐶𝐴𝐵 = 𝐹 𝑎𝐴 𝑔𝑎𝑏𝐹 𝑏𝐵 , which is the pulled-back metric. Note that

𝐶𝐴𝐵 = 𝐺𝐴𝑀𝐶𝑀𝐵 = (𝐺𝐴𝑀𝐹 𝑎𝑀 𝑔𝑎𝑏)𝐹 𝑏𝐵 =
(

𝐹 𝖳
)𝐴

𝑏 𝐹
𝑏
𝐵 , (2.12)

nd hence 𝐂 = 𝐅𝖳𝐅, which is the familiar definition of the right Cauchy–Green strain.
Next, consider two vectors in the reference configuration 𝐔,𝐖 ∈ 𝑇𝑋. Their dot product is calculated using the material metric

as

⟨𝐔,𝐖⟩𝐆 = ⟨𝐅−1𝐮,𝐅−1𝐰⟩𝐆 = ⟨𝐮,𝐰⟩𝐅∗𝐆 , (2.13)

here 𝐅∗𝐆 = 𝐅−⋆𝐆𝐅−1 is the push-forward of the material metric and is denoted as 𝐜♭, which is the spatial analogue of the right
auchy–Green strain. In components, 𝑐𝑎𝑏 = 𝐹−𝐴

𝑎 𝐺𝐴𝐵 𝐹−𝐵
𝑏.

If instead of spatial and material vectors, 1-forms and their dot products are considered, the left Cauchy–Green strain can
e defined as 𝐁♯ = 𝜑∗𝐠♯. Its spatial analogue is defined as 𝐛♯ = 𝜑∗𝐆♯ = 𝐅𝐆♯𝐅⋆. In components, 𝐵𝐴𝐵 = 𝐹−𝐴

𝑎 𝐹−𝐵
𝑏 𝑔𝑎𝑏, and

𝑎𝑏 = 𝐹 𝑎𝐴𝐹 𝑏𝐵 𝐺𝐴𝐵 . The tensor 𝐛 is defined as 𝐛 = 𝐛♯𝐠. Similarly, 𝐜 is defined as 𝐜 = 𝐠♯𝐜♭. Thus, 𝐜𝐛 = 𝐠♯𝐜♭𝐛♯𝐠 = 𝐠♯𝐅−⋆𝐆𝐅−1𝐅𝐆♯𝐅⋆𝐠 =
♯𝐅−⋆𝐆𝐆♯𝐅⋆𝐠 = 𝐠♯𝐅−⋆𝐅⋆𝐠 = 𝐠♯𝐠 = id . This means that 𝐛 = 𝐜−1. Similarly, 𝐁 = 𝐂−1.

.2. Constitutive equations

For a material undergoing remodeling or aging, the energy function is explicitly time-dependent. For remodeling/aging solids,
his set is time-dependent, in general.6 The 𝑋-dependence of the energy function models the inhomogeneity of the body, while the
xplicit dependence on time 𝑡 models material remodeling/aging. Note that 𝐠 is a fixed background metric in the ambient space while
= 𝐆(𝑋, 𝑡) is a time-dependent material metric that is used to calculate the natural local distances in the body and models anelastic

ffects, e.g., defects, thermal strains, growth, remodeling, etc. Material mass density 𝜌0 = 𝜌0(𝑋, 𝑡) can be explicitly time-dependent,
.g., in the case of growing or aging materials.

.2.1. Material remodeling
We follow Epstein (2015) and define a time-dependent remodeling tensor

𝑟
𝐅 =

𝑟
𝐅(𝑋, 𝑡) that at 𝑋 ∈  is a linear map from the

angent space 𝑇𝑋 to itself, i.e.,
𝑟
𝐅(𝑋, 𝑡) ∶ 𝑇𝑋 → 𝑇𝑋. It is assumed that the initial body has an energy function 𝑊 = 𝑊 (𝑋,𝐅, 𝐆̊, 𝐠).

he material evolution is called remodeling if (Epstein, 2015)

𝑊 (𝑡, 𝑋,𝐅, 𝐆̊, 𝐠) = 𝑊 (𝑋,𝐅
𝑟
𝐅−1, 𝐆̊, 𝐠) . (2.14)

his is equivalent to assuming a multiplicative decomposition of the deformation gradient into an elastic and a remodeling part:
=

𝑒
𝐅
𝑟
𝐅, and 𝑊 = 𝑊 (𝑋,

𝑒
𝐅, 𝐆̊, 𝐠) (see Sadik and Yavari (2017) and Yavari and Sozio (2023) for a detailed history of this

ecomposition in anelasticity). Notice that
𝑒
𝐅 is the push-forward of the total deformation gradient by

𝑟
𝐅, i.e.,

𝑒
𝐅 =

𝑟
𝐅∗𝐅. Thus,

̃(𝑡, 𝑋,𝐅, 𝐆̊, 𝐠) = 𝑊 (𝑋,
𝑟
𝐅∗𝐅, 𝐆̊, 𝐠).

.2.2. Material metric
Suppose the initial body is stress-free. Its natural metric is the flat metric 𝐆̊ induced from the Euclidean ambient space. At 𝑋 ∈ 

onsider two vectors 𝐔1 and 𝐔2 in 𝑇𝑋. Their dot product is given as ⟨𝐔1,𝐔2⟩𝐆̊. When the body undergoes a remodeling process at
ime 𝑡, these vectors are mapped to the vectors

𝑟
𝐅𝐔1 and

𝑟
𝐅𝐔2, respectively. The dot product of the new (time-dependent) vectors is

alculated as

⟨

𝑟
𝐅𝐔1,

𝑟
𝐅𝐔2⟩𝐆̊ = ⟨𝐔1,𝐔2⟩ 𝑟𝐅∗𝐆̊

. (2.15)

his means that 𝐆 =
𝑟
𝐅∗𝐆̊ =

𝑟
𝐅⋆𝐆̊

𝑟
𝐅 (in components, 𝐺𝐴𝐵 =

𝑟
𝐹𝑀𝐴 𝐺̊𝑀𝑁

𝑟
𝐹𝑁𝐵) is the metric that can be used to calculate the natural

engths and angles in the remodeling body. This is the material metric of the remodeling body. This metric is identical to the material
etric in anelasticity, which is unsurprising as remodeling is a special anelastic process.

6 As we will see, in remodeling, the symmetry of the material is preserved in the sense that the symmetry group is time-dependent according to Noll’s rule,
5

.e., push-forward via the remodeling tensor.
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Fig. 1. The local remodeling transformation.

At 𝑋 ∈  and at time 𝑡 = 0 consider a volume element 𝑑𝑉0(𝑋). If this volume element is allowed to remodel independently of
he rest of the body, at time 𝑡, its volume in the Euclidean ambient space would be 𝑑𝑉𝑡(𝑋) =

𝑟
𝐽 (𝑋, 𝑡) 𝑑𝑉0(𝑋), where

𝑟
𝐽 (𝑋, 𝑡) = det

𝑟
𝐅(𝑋, 𝑡)

√

det 𝐆̊(𝑋)
det 𝐆̊(𝑋)

= det
𝑟
𝐅(𝑋, 𝑡) . (2.16)

he material tensor
𝑟
𝐅 represents a remodeling process if it is volume preserving, i.e.,

𝑟
𝐽 (𝑋, 𝑡) = det

𝑟
𝐅(𝑋, 𝑡) = 1, for all 𝑋 ∈  and the

ntire remodeling time interval. In summary, remodeling is an isochoric anelastic process, which is a direct consequence of having
ssumed that there is no mass growth or resorption.

The remodeling tensor
𝑟
𝐅 can be understood as a local change of reference configuration, and

𝑟
𝐅∗𝐅 = 𝐅

𝑟
𝐅−1 is the transformed

eformation gradient, or deformation gradient with respect to the new local reference configuration. The three local configurations
nd the linear maps between them are schematically shown in the commutative diagram of Fig. 1.

The following summarizes the content of the material metric in simple words. Suppose that at time 𝑡, the remodeling body is
artitioned into many small pieces, and each piece is allowed to relax independently of the rest of the body. The local relaxation
ap is

𝑟
𝐅. These relaxed pieces cannot be put back together in the Euclidean ambient space, and this is due to the incompatibility

f
𝑟
𝐅. For a local relaxed piece, the natural distances and angles are measured using the flat metric of the Euclidean space 𝐆̊. The

ame lengths and angles can be calculated in the global reference configuration if the pulled-back metric
𝑟
𝐅∗𝐆̊ is used. This metric

as non-vanishing curvature, in general, and hence, remodeling may induce residual stresses.

.2.3. Material symmetry
For the initial elastic body at time 𝑡 = 0 the material symmetry group ̊𝑋 at 𝑋 ∈  with respect to the reference configuration

, 𝐆̊) is defined as

𝑊 (𝑋,𝐅𝐊̊, 𝐆̊, 𝐠) = 𝑊 (𝑋,𝐅, 𝐆̊, 𝐠) , ∀ 𝐊̊ ∈ ̊𝑋 ⩽ Orth(𝐆̊) , (2.17)

or any deformation gradient 𝐅, where 𝐊̊ ∶ 𝑇𝑋 → 𝑇𝑋 is an invertible linear transformation, and Orth(𝐆̊) = {𝐐 ∶ 𝑇𝑋 → 𝑇𝑋 ∣
⋆𝐆̊𝐐 = 𝐆̊}, and ̊𝑋 ⩽ Orth(𝐆̊) means that ̊𝑋 is a subgroup of Orth(𝐆̊).

Let us denote the symmetry group of the remodeling body at time 𝑡 by (𝑋, 𝑡), and hence

𝑊 (𝑡, 𝑋,𝐅𝐊, 𝐆̊, 𝐠) = 𝑊 (𝑡, 𝑋,𝐅, 𝐆̊, 𝐠) , ∀ 𝐊 ∈ 𝑋 ⩽ Orth(𝐆̊) , (2.18)

or any deformation gradient 𝐅, where 𝐊 ∶ 𝑇𝑋 → 𝑇𝑋 is an invertible linear transformation. Given 𝐊̊ ∈ ̊𝑋 , one can write

𝑊 (𝑡, 𝑋,𝐅, 𝐆̊, 𝐠) = 𝑊 (𝑋,𝐅
𝑟
𝐅−1, 𝐆̊, 𝐠) = 𝑊 (𝑋,𝐅

𝑟
𝐅−1𝐊̊, 𝐆̊, 𝐠) = 𝑊 (𝑋,𝐅

𝑟
𝐅−1𝐊̊

𝑟
𝐅
𝑟
𝐅−1, 𝐆̊, 𝐠) = 𝑊 (𝑡, 𝑋,𝐅(

𝑟
𝐅−1𝐊̊

𝑟
𝐅), 𝐆̊, 𝐠) , (2.19)

hich implies that
𝑟
𝐅−1𝐊̊

𝑟
𝐅 ∈ (𝑋, 𝑡), i.e.,

𝑟
𝐅−1̊𝑋

𝑟
𝐅 ⊂ (𝑋, 𝑡). Now suppose 𝐊 ∈ (𝑋, 𝑡), and hence 𝑊 (𝑡, 𝑋,𝐅𝐊, 𝐆̊, 𝐠) = 𝑊 (𝑡, 𝑋,𝐅, 𝐆̊, 𝐠).

hus

𝑊 (𝑋,𝐅
𝑟
𝐅−1, 𝐆̊, 𝐠) = 𝑊 (𝑋,𝐅𝐊

𝑟
𝐅−1, 𝐆̊, 𝐠) = 𝑊 (𝑋,𝐅

𝑟
𝐅−1 𝑟𝐅𝐊

𝑟
𝐅−1, 𝐆̊, 𝐠) = 𝑊 (𝑋,𝐅

𝑟
𝐅−1(

𝑟
𝐅𝐊

𝑟
𝐅−1), 𝐆̊, 𝐠) , (2.20)

hich implies that
𝑟
𝐅𝐊

𝑟
𝐅−1 ∈ ̊𝑋 , i.e.,

𝑟
𝐅(𝑋, 𝑡)

𝑟
𝐅−1 ⊂ ̊𝑋 , or equivalently, (𝑋, 𝑡) ⊂

𝑟
𝐅−1̊𝑋

𝑟
𝐅. Therefore

(𝑋, 𝑡) =
𝑟
𝐅−1̊𝑋

𝑟
𝐅 =

𝑟
𝐅∗̊𝑋 , (2.21)

.e., the material symmetry group at time 𝑡 is the pull-back of that at time 𝑡 = 0 by the remodeling tensor. This is the so-called Noll’s
ule (Noll, 1958; Coleman and Noll, 1959, 1963, 1964) and is identical to what Epstein (2015) obtained.

.2.4. Isotropic solids
For an isotropic solid, the energy function is materially covariant, i.e., if 𝛯 ∶  →  such that 𝛯(𝑋) = 𝑋, then
(𝑋,𝛯∗𝐅, 𝛯∗𝐆̊, 𝐠) = 𝑊 (𝑋,𝐅, 𝐆̊, 𝐠). This is a local property and one can write it as

𝑊 (𝑋,𝐀∗𝐅,𝐀∗𝐆̊, 𝐠) = 𝑊 (𝑋,𝐅, 𝐆̊, 𝐠) , (2.22)

here 𝐀 ∶ 𝑇𝑋 → 𝑇𝑋 is any invertible linear transformation. Thus

𝑊 (𝑡, 𝑋,𝐅, 𝐆̊, 𝐠) = 𝑊 (𝑋,
𝑟
𝐅 𝐅, 𝐆̊, 𝐠) = 𝑊 (𝑋,

𝑟
𝐅∗ 𝑟

𝐅 𝐅,
𝑟
𝐅∗𝐆̊, 𝐠) = 𝑊 (𝑋,𝐅,𝐆, 𝐠) , (2.23)
6
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where 𝐀 =
𝑟
𝐅 was chosen and 𝐆 =

𝑟
𝐅∗𝐆̊ is the material metric. In coordinates 𝐺𝐴𝐵 =

𝑟
𝐹𝑀𝐴 𝐺̊𝑀𝑁

𝑟
𝐹𝑁𝐵 . Objectivity implies that

= 𝑊̂ (𝑋,𝐂♭,𝐆), where 𝐂♭ = 𝐅∗𝐠 = 𝐅⋆𝐠𝐅. Therefore, we have concluded that the energy function of an isotropic remodeling body
s identical to its initial energy function if one replaces the flat initial material metric 𝐆̊ by the (evolving) material metric 𝐆 (Yavari
nd Sozio, 2023).

For an isotropic solid, 𝑊 depends only on the principal invariants of 𝐂♭, i.e., 𝑊 = 𝑊 (𝑋, 𝐼1, 𝐼2, 𝐼3), where

𝐼1 = tr𝐆̊ 𝐂 = 𝐶𝐴𝐴 = 𝐶𝐴𝐵 𝐺
𝐴𝐵 , 𝐼2 =

1
2
(

𝐼21 − tr𝐆̊ 𝐂2) = 1
2
(

𝐼21 − 𝐶𝐴𝐵 𝐶𝐵𝐴
)

= 1
2
(

𝐼21 − 𝐶𝑀𝐵 𝐶𝑁𝐴 𝐺̊
𝐴𝑀 𝐺̊𝐵𝑁

)

,

𝐼3 = det 𝐂 = det 𝐂♭

det 𝐆̊
.

(2.24)

rom (2.24), for an isotropic remodeling body we have 𝑊 = 𝑊 (𝑋, 𝐼1, 𝐼2, 𝐼3), where

𝐼1 = tr𝐆 𝐂♭ = 𝐂♭ ∶𝐆♯ = 𝐶𝐴𝐵 𝐺
𝐴𝐵 , 𝐼2 =

1
2
[

𝐼21 − tr𝐆 𝐂2] = 1
2
(

𝐼21 − 𝐶𝑀𝐵 𝐶𝑁𝐴 𝐺
𝐴𝑀𝐺𝐵𝑁

)

,

𝐼3 =
det 𝐂♭
det𝐆

= det 𝐂♭

(det
𝑟
𝐅)2 det 𝐆̊

= det 𝐂♭

det 𝐆̊
= 𝐼3 .

(2.25)

For an isotropic solid, the Cauchy stress has the following representation (Doyle and Ericksen, 1956)7

𝝈 = 2
√

𝐼3

[(

𝐼2𝑊 2 + 𝐼3𝑊 3

)

𝐠♯ +𝑊 1 𝐛♯ − 𝐼3𝑊 2 𝐜♯
]

. (2.26)

or an incompressible isotropic solid 𝐼3 = 1, and hence

𝝈 = −𝑝 𝐠♯ + 2𝑊 1 𝐛♯ − 2𝑊 2 𝐜♯ , (2.27)

here 𝑝 is the Lagrange multiplier associated with the incompressibility constraint 𝐽 =
√

𝐼3 = 1.

.2.5. Anisotropic solids
Material anisotropy can be described by the so-called structural tensors. When structural tensors are added to the list of the

rguments of the energy function, it becomes an isotropic function of its arguments (Liu, 1982; Boehler, 1987; Zheng and Spencer,
993; Zheng, 1994; Lu and Papadopoulos, 2000), or materially covariant in the setting of anelasticity (Lu, 2012; Yavari and Sozio,
023). We assume that the initial body has an energy function 𝑊 = 𝑊 (𝑋,𝐅, 𝜦̊, 𝐆̊, 𝐠), where 𝜦̊ is a collection of structural tensors
hat describe the anisotropy class of the material. The time-dependent energy function of the remodeling body is defined as

𝑊 (𝑡, 𝑋,𝐅, 𝐆̊, 𝐠) = 𝑊 (𝑋,𝐅
𝑟
𝐅−1, 𝜦̊, 𝐆̊, 𝐠) . (2.28)

nowing that 𝑊 is a materially covariant function, we can write

𝑊 (𝑡, 𝑋,𝐅, 𝐆̊, 𝐠) = 𝑊 (𝑋,
𝑟
𝐅∗𝐅, 𝜦̊, 𝐆̊, 𝐠) = 𝑊 (𝑋,

𝑟
𝐅∗ 𝑟

𝐅∗𝐅,
𝑟
𝐅∗𝜦̊,

𝑟
𝐅∗𝐆̊, 𝐠) = 𝑊 (𝑋,𝐅,

𝑟
𝐅∗𝜦̊,

𝑟
𝐅∗𝐆̊, 𝐠) . (2.29)

herefore, for an anisotropic remodeling body

𝑊 (𝑡, 𝑋,𝐅, 𝐆̊, 𝐠) = 𝑊 (𝑋,𝜦,𝐆, 𝐠) , (2.30)

here 𝜦 =
𝑟
𝐅∗𝜦̊ and 𝐆 =

𝑟
𝐅∗𝐆̊. In other words, the functional form of the energy function of the remodeling body is identical to

hat of the initial body. The initial flat material metric and the initial structural tensors are replaced by their pull-backs by the
emodeling tensor. This is consistent with what Yavari and Sozio (2023) derived for general anisotropic anelasticity.

ransversely isotropic solids. For the initial body the energy function has the form𝑊 = 𝑊̂ (𝑋,𝐂♭, 𝐀̊, 𝐆̊), where 𝐀̊ = 𝐍̊⊗𝐍̊ is a structural
ensor (Doyle and Ericksen, 1956; Spencer, 1982; Lu and Papadopoulos, 2000). Including the structural tensor, the energy function
ecomes an isotropic function of its arguments and can be rewritten as

𝑊 = 𝑊 (𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5) , (2.31)

here 𝐼1, 𝐼2, and 𝐼3 are defined in (2.24) and

𝐼4 = 𝐍̊ ⋅ 𝐂 ⋅ 𝐍̊ = 𝑁̊𝐴𝑁̊𝐵 𝐶𝐴𝐵 , 𝐼5 = 𝐍̊ ⋅ 𝐂2 ⋅ 𝐍̊ = 𝐍̊ ⋅ 𝐂♭𝐆̊♯𝐂♭ ⋅ 𝐍̊ = 𝑁̊𝐴𝑁̊𝐵 𝐶𝐵𝑀 𝐶𝑀𝐴 . (2.32)

t time 𝑡 > 0 the remodeling body has the energy function 𝑊 = 𝑊̂ (𝑋,𝐂♭,𝐀,𝐆), where 𝐀 = 𝐍 ⊗ 𝐍 =
𝑟
𝐅∗𝐀̊ =

𝑟
𝐅−1𝐍̊ ⊗

𝑟
𝐅−1𝐍̊. From

2.30) and (2.31), the energy function can be written as 𝑊 = 𝑊 (𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5), where

𝐼1 = tr 𝐂 = 𝐶𝐴𝐴 , 𝐼2 = det 𝐂 tr𝐆𝐂−1 = det(𝐶𝐴𝐵)(𝐶−1)𝐷𝐷 , 𝐼3 = det𝐂 = det(𝐶𝐴𝐵) ,

𝐼4 = 𝐍 ⋅ 𝐂 ⋅ 𝐍 = 𝑁𝐴𝑁𝐵 𝐶𝐴𝐵 , 𝐼5 = 𝐍 ⋅ 𝐂2 ⋅ 𝐍 = 𝐍 ⋅ 𝐂♭𝐆♯𝐂♭ ⋅ 𝐍 = 𝑁𝐴𝑁𝐵 𝐶𝐵𝑀 𝐶𝑀𝐴 .
(2.33)

ote that 𝐼4 = ⟨𝐍,𝐍⟩𝐂♭ = ⟨

𝑟
𝐅−1𝐍̊,

𝑟
𝐅−1𝐍̊⟩𝐂♭ , and 𝐼5 = ⟨𝐍,𝐍⟩𝐂♭𝐆♯𝐂♭ = ⟨

𝑟
𝐅−1𝐍̊,

𝑟
𝐅−1𝐍̊⟩𝐂♭𝐆♯𝐂♭ .

7 The standard measures of stress are discussed in Remark 3.2.
7
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For a transversely isotropic solid, the Cauchy stress has the following representation (Ericksen and Rivlin, 1954; Golgoon and
avari, 2018a,b)

𝝈 = 2
√

𝐼3

{(

𝐼2𝑊 2 + 𝐼3𝑊 3

)

𝐠♯ +𝑊 1 𝐛♯ − 𝐼3𝑊 2 𝐜♯ +𝑊 4 𝐧⊗ 𝐧 +𝑊 5

[

𝐧⊗ (𝐛♯𝐠𝐧) + (𝐛♯𝐠𝐧)⊗ 𝐧
]}

. (2.34)

or an incompressible transversely isotropic solid 𝐼3 =
𝑒
𝐼3 = 1, and hence

𝝈 = −𝑝 𝐠♯ + 2𝑊 1 𝐛♯ − 2𝑊 2 𝐜♯ + 2𝑊 4 𝐧⊗ 𝐧 + 2𝑊 5

[

𝐧⊗ (𝐛♯𝐠𝐧) + (𝐛♯𝐠𝐧)⊗ 𝐧
]

, (2.35)

here 𝑝 is the Lagrange multiplier associated with the incompressibility constraint 𝐽 =
√

𝐼3 = 1.

rthotropic solids. In an orthotropic solid, at every point, there are three mutually orthogonal material preferred directions. In the
nitial body these are denoted by 𝐍̊1, 𝐍̊2, and 𝐍̊3. A possible choice for structural tensors are 𝐀̊1 = 𝐍̊1 ⊗ 𝐍̊1, 𝐀̊2 = 𝐍̊2 ⊗ 𝐍̊2, and
̊ 3 = 𝐍̊3 ⊗ 𝐍̊3. However, only two of them are independent as 𝐀̊1 + 𝐀̊2 + 𝐀̊3 = 𝐈. Without loss of generality, we take 𝐀̊1 and 𝐀̊2
to be the independent structural tensors. Including the structural tensors, the energy function becomes an isotropic function of its
arguments and can be rewritten as

𝑊 = 𝑊 (𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6, 𝐼7) , (2.36)

here 𝐼1, 𝐼2, and 𝐼3 are defined in (2.24) and

𝐼4 = 𝐍̊1 ⋅ 𝐂 ⋅ 𝐍̊1 = 𝑁̊𝐴
1 𝑁̊

𝐵
1 𝐶𝐴𝐵 , 𝐼5 = 𝐍̊1 ⋅ 𝐂2 ⋅ 𝐍̊1 = 𝐍̊1 ⋅ 𝐂♭𝐆̊♯𝐂♭ ⋅ 𝐍̊1 = 𝑁̊𝐴

1 𝑁̊
𝐵
1 𝐶𝐵𝑀 𝐶𝑀𝐴 ,

𝐼6 = 𝐍̊2 ⋅ 𝐂 ⋅ 𝐍̊2 = 𝑁̊𝐴
2 𝑁̊

𝐵
2 𝐶𝐴𝐵 , 𝐼7 = 𝐍̊2 ⋅ 𝐂2 ⋅ 𝐍̊2 = 𝐍̊2 ⋅ 𝐂♭𝐆̊♯𝐂♭ ⋅ 𝐍̊2 = 𝑁̊𝐴

2 𝑁̊
𝐵
2 𝐶𝐵𝑀 𝐶𝑀𝐴 .

(2.37)

t time 𝑡 > 0 the remodeling body has the energy function 𝑊 = 𝑊̂ (𝑋,𝐂♭,𝐀1,𝐀2,𝐆), where 𝐀1 = 𝐍1 ⊗ 𝐍1 =
𝑟
𝐅∗𝐀̊1 =

𝑟 −1𝐍̊1 ⊗
𝑟
𝐅−1𝐍̊1, and 𝐀2 = 𝐍2 ⊗ 𝐍2 =

𝑟
𝐅∗𝐀̊2 =

𝑟
𝐅−1𝐍̊2 ⊗

𝑟
𝐅−1𝐍̊2. From (2.30) and (2.36), the energy function can be written as

= 𝑊 (𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6, 𝐼7), where

𝐼1 = tr 𝐂 = 𝐶𝐴𝐴 , 𝐼2 = det 𝐂 tr𝐆𝐂−1 = det(𝐶𝐴𝐵)(𝐶−1)𝐷𝐷 , 𝐼3 = det𝐂 = det(𝐶𝐴𝐵) ,

𝐼4 = 𝐍 ⋅ 𝐂 ⋅ 𝐍1 = 𝑁𝐴
1 𝑁

𝐵
1 𝐶𝐴𝐵 , 𝐼5 = 𝐍1 ⋅ 𝐂2 ⋅ 𝐍1 = 𝐍1 ⋅ 𝐂♭𝐆♯𝐂♭ ⋅ 𝐍1 = 𝑁𝐴

1 𝑁
𝐵
1 𝐶𝐵𝑀 𝐶𝑀𝐴 ,

𝐼6 = 𝐍2 ⋅ 𝐂 ⋅ 𝐍2 = 𝑁𝐴
2 𝑁

𝐵
2 𝐶𝐴𝐵 , 𝐼7 = 𝐍2 ⋅ 𝐂2 ⋅ 𝐍2 = 𝐍2 ⋅ 𝐂♭𝐆♯𝐂♭ ⋅ 𝐍2 = 𝑁𝐴

2 𝑁
𝐵
2 𝐶𝐵𝑀 𝐶𝑀𝐴 .

(2.38)

For an orthotropic isotropic solid, the Cauchy stress has the following representation (Smith and Rivlin, 1958; Spencer, 1986;
olgoon and Yavari, 2018a,b)

𝝈 = 2
√

𝐼3

{ (

𝐼2𝑊 2 + 𝐼3𝑊 3

)

𝐠♯ +𝑊 1 𝐛♯ − 𝐼3𝑊 2 𝐜♯ +𝑊 4 𝐧1 ⊗ 𝐧1 +𝑊 5

[

𝐧1 ⊗ (𝐛♯𝐠𝐧1) + (𝐛♯𝐠𝐧1)⊗ 𝐧1
]

+𝑊 6 𝐧2 ⊗ 𝐧2 +𝑊 7

[

𝐧2 ⊗ (𝐛♯𝐠𝐧2) + (𝐛♯𝐠𝐧2)⊗ 𝐧2
] }

.
(2.39)

For an incompressible orthotropic solid 𝐼3 =
𝑒
𝐼3 = 1, and hence

𝝈 = −𝑝 𝐠♯ + 2𝑊 1 𝐛♯ − 2𝑊 2 𝐜♯ + 2𝑊 4 𝐧1 ⊗ 𝐧1 + 2𝑊 5

[

𝐧1 ⊗ (𝐛♯𝐠𝐧1) + (𝐛♯𝐠𝐧1)⊗ 𝐧1
]

+ 2𝑊 6 𝐧2 ⊗ 𝐧2

+ 2𝑊 7

[

𝐧2 ⊗ (𝐛♯𝐠𝐧2) + (𝐛♯𝐠𝐧2)⊗ 𝐧2
]

,
(2.40)

where 𝑝 is the Lagrange multiplier associated with the incompressibility constraint 𝐽 =
√

𝐼3 = 1.

onoclinic solids. A monoclinic solid in its initial state has three material preferred directions 𝐍̊1(𝑋), 𝐍̊2(𝑋), and 𝐍̊3(𝑋) such that
̊ 1 ⋅ 𝐍̊2 ≠ 0 and 𝐍̊3 is normal to the plane of 𝐍̊1 and 𝐍̊2 (Merodio and Ogden, 2020). The energy function of a monoclinic solid
epends on nine invariants (Spencer, 1986):

𝑊 = 𝑊 (𝑋, 𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6, 𝐼7, 𝐼8, 𝐼9) . (2.41)

he first seven invariants are identical to those of orthotropic solids. The two extra invariants are defined as

𝐼8 = ̊ 𝐍̊1 ⋅ 𝐂 ⋅ 𝐍̊2 , 𝐼9 = ̊2 , ̊ = 𝐍̊1 ⋅ 𝐍̊2 . (2.42)

t time 𝑡 > 0, the remodeling body has the energy function 𝑊 = 𝑊 (𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6, 𝐼7, 𝐼8, 𝐼9), where the first seven invariants are
dentical to those given in (2.38), and

𝐼8 =  𝐍1 ⋅ 𝐂 ⋅ 𝐍2 , 𝐼9 = 2 ,  = 𝐍1 ⋅ 𝐍2 . (2.43)

For a monoclinic solid, the Cauchy stress has the following representation

𝝈 = 2
√

𝐼3

{ (

𝐼2𝑊 2 + 𝐼3𝑊 3

)

𝐠♯ +𝑊 1 𝐛♯ − 𝐼3𝑊 2 𝐜♯ +𝑊 4 𝐧1 ⊗ 𝐧1 +𝑊 5

[

𝐧1 ⊗ (𝐛♯𝐠𝐧1) + (𝐛♯𝐠𝐧1)⊗ 𝐧1
]

+𝑊 𝐧 ⊗ 𝐧 +𝑊
[

𝐧 ⊗ (𝐛♯𝐠𝐧 ) + (𝐛♯𝐠𝐧 )⊗ 𝐧
]

+ 𝑊
(

𝐧 ⊗ 𝐧 + 𝐧 ⊗ 𝐧
)

}

.
(2.44)
8
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For an incompressible orthotropic solid 𝐼3 =
𝑒
𝐼3 = 1, and hence

𝝈 = −𝑝 𝐠♯ + 2𝑊 1 𝐛♯ − 2𝑊 2 𝐜♯ + 2𝑊 4 𝐧1 ⊗ 𝐧1 + 2𝑊 5

[

𝐧1 ⊗ (𝐛♯𝐠𝐧1) + (𝐛♯𝐠𝐧1)⊗ 𝐧1
]

+ 2𝑊 6 𝐧2 ⊗ 𝐧2 + 2𝑊 7

[

𝐧2 ⊗ (𝐛♯𝐠𝐧2) + (𝐛♯𝐠𝐧2)⊗ 𝐧2
]

+ 2𝑊 8
(

𝐧1 ⊗ 𝐧2 + 𝐧2 ⊗ 𝐧1
)

,
(2.45)

here 𝑝 is the Lagrange multiplier associated with the incompressibility constraint 𝐽 =
√

𝐼3 = 1.

.2.6. Dissipation potential
Remodeling is a dissipative process. This means that in any mechanical formulation of remodeling, dissipation due to the

volution of the remodeling tensor must be taken into account. Let us assume the existence of a dissipation potential (or Rayleigh
issipation function) 𝜙 = 𝜙(𝑋,𝐅,

𝑟
𝐅,

𝑟̇
𝐅,𝑮, 𝒈). Objectivity implies that 𝜙 = 𝜙̂(𝑋,𝐂♭,

𝑟
𝐅,

𝑟̇
𝐅,𝑮). Let us assume that 𝜙 is a convex function

f
𝑟̇
𝐅 (Ziegler, 1958; Ziegler and Wehrli, 1987; Germain et al., 1983; Goldstein et al., 2002; Kumar and Lopez-Pamies, 2016). The

eneralized force that corresponds to the evolution of remodeling tensor is related to the dissipation potential as

𝑩𝑟 = −
𝜕𝜙

𝜕
𝑟̇
𝐅
. (2.46)

onvexity of 𝜙 in
𝑟̇
𝐅 implies that

𝜙(𝑋,𝐂♭,
𝑟
𝐅,

𝑟̇
𝐅,𝑮) +

𝜕𝜙

𝜕
𝑟̇
𝐅
(𝑋,𝐂♭,

𝑟
𝐅,

𝑟̇
𝐅,𝑮)∶𝛥

𝑟̇
𝐅 ≤ 𝜙(𝑋,𝐂♭,

𝑟
𝐅,

𝑟̇
𝐅 + 𝛥

𝑟̇
𝐅,𝑮) . (2.47)

Let us choose 𝛥
𝑟̇
𝐅 = −

𝑟̇
𝐅. Thus

𝜕𝜙

𝜕
𝑟̇
𝐅
(𝑋,𝐂♭,

𝑟
𝐅,

𝑟̇
𝐅,𝑮)∶

𝑟̇
𝐅 ≥ 𝜙(𝑋,𝐂♭,

𝑟
𝐅,

𝑟̇
𝐅,𝑮) − 𝜙(𝟎) ≥ 0 , (2.48)

as 𝜙 attains its minimum for
𝑟̇
𝐅 = 𝟎. The left-hand side is the entropy production. Therefore, we conclude that the entropy production

is non-negative when 𝜙 is convex in
𝑟̇
𝐅 (see Section 3.4 and Eq. (3.86)).

The dissipation potential is invariant under the material symmetry group, i.e.,

𝜙(𝑋,𝐅𝐊,𝐊∗ 𝑟
𝐅,

̇
𝐊∗

𝑟
𝐅,𝐆, 𝐠) = 𝜙(𝑋,𝐅,

𝑟
𝐅,

𝑟̇
𝐅,𝐆, 𝐠) , ∀ 𝐊 ∈ 𝑋 ⩽ Orth(𝐆) , (2.49)

or all deformation gradients 𝐅 and remodeling tensors
𝑟
𝐅 , where Orth(𝐆) = {𝐐 ∶ 𝑇𝑋 → 𝑇𝑋 ∣ 𝐐⋆𝐆𝐐 = 𝐐𝐆𝐐⋆ = 𝐆} ,

𝐊∗ 𝑟
𝐅 = 𝐊−1 𝑟𝐅𝐊 , and

̇
𝐊∗

𝑟
𝐅 = 𝐊∗ 𝑟̇

𝐅 = 𝐊−1 𝑟̇𝐅𝐊. If the structural tensors are added to the list of arguments of the dissipation potential, it
becomes an isotropic function. Thus, 𝜙(𝑋,𝐅,

𝑟
𝐅,

𝑟̇
𝐅,𝐆,𝜦, 𝐠) is an isotropic function.

We follow Kumar and Lopez-Pamies (2016) and assume the following form for the dissipation potential

𝜙(𝑋,𝐅,
𝑟
𝐅,

𝑟̇
𝐅,𝐆,𝜦, 𝐠) = 1

2
𝑟̇
𝐅 ⋅ A(𝑋,𝐅,

𝑒
𝐅,𝐆,𝜦, 𝐠) ⋅

𝑟̇
𝐅 = 1

2
𝑟̇
𝐹𝐴𝐵

𝑟̇
𝐹𝐶𝐷 𝖠𝐴

𝐵
𝐶
𝐷 , (2.50)

here A(𝑋,𝐅,
𝑒
𝐅,𝐆,𝜦, 𝐠) is a positive-definite fourth-order tensor.8 Objectivity implies that A(𝑋,𝐅,

𝑒
𝐅,𝐆,𝜦, 𝐠) = Â(𝑋,𝐂♭,

𝑒
𝐂♭,𝐆,𝜦).

Notice that the fourth-order tensor A has the major symmetries but does not need to have any minor symmetries. Isotropy of
(𝑋,𝐅,

𝑟
𝐅,

𝑟̇
𝐅,𝐆,𝜦, 𝐠) implies that

𝐊−1 𝑟̇𝐅𝐊∶A(𝐅𝐊,
𝑒
𝐅𝐊,𝐆,𝐊∗𝜦, 𝐠)∶𝐊−1 𝑟̇𝐅𝐊 =

𝑟̇
𝐅∶A(𝐅,

𝑒
𝐅,𝐆,𝜦, 𝐠)∶

𝑟̇
𝐅 , ∀

𝑟̇
𝐅 . (2.51)

s this holds for arbitrary
𝑟̇
𝐅, one concludes that9

𝐊∗A(𝐅,
𝑒
𝐅,𝐆, 𝐠) = A(𝐅,

𝑒
𝐅,𝐆, 𝐠) , (2.52)

.e., A is an isotropic tensor. Thus, the most general form for this tensor is (Jog, 2006)

𝖠𝐴
𝐵
𝐶
𝐷 = 𝜂1 𝛿

𝐵
𝐴𝛿

𝐷
𝐶 + 𝜂2 𝛿𝐷𝐴 𝛿

𝐵
𝐶 + 𝜂3 𝐺𝐴𝐶𝐺𝐵𝐷 . (2.53)

r, equivalently

𝖠𝐴𝐵𝐶𝐷 = 𝜂1 𝐺𝐴𝐵𝐺𝐶𝐷 + 𝜂2 𝐺𝐴𝐷𝐺𝐵𝐶 + 𝜂3 𝐺𝐴𝐶𝐺𝐵𝐷 . (2.54)

hus
𝜕𝜙

𝜕
𝑟̇
𝐹𝐴𝐵

= 𝜂1
𝑟
𝐹𝑀𝑀 𝛿𝐵𝐴 + 𝜂2

𝑟̇
𝐹𝐵𝐴 + 𝜂3 𝐺𝐴𝑀

𝑟̇
𝐹𝑀𝑁 𝐺

𝑁𝐵 . (2.55)

8 Recall that the rate of energy dissipation is written as 𝜕𝜙

𝜕
𝑟̇
𝐅
∶

𝑟̇

𝐅 ≥ 0. If the dissipation potential is quadratic, then 𝜕𝜙

𝜕
𝑟̇
𝐅
∶

𝑟̇

𝐅 = 2𝜙.
9 In incompetents, (𝐊∗A) 𝐵 𝐷 = K−𝐼 K𝐵 K−𝐾 K𝐷 𝖠 𝐽 𝐿.
9

𝐴 𝐶 𝐴 𝐽 𝐶 𝐿 𝐼 𝐾
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Or
𝜕𝜙

𝜕
𝑟̇
𝐅

= 𝜂1(tr
𝑟̇
𝐅) 𝐈 + 𝜂2

𝑟̇
𝐅⋆ + 𝜂3 𝐆

𝑟̇
𝐅𝐆♯ , (2.56)

where 𝜂𝑖 = 𝜂𝑖(𝑋,𝐂,
𝑒
𝐂), 𝑖 = 1, 2, 3, and tr

𝑟̇
𝐅 =

𝑟̇
𝐹𝐶𝐶 . The dissipation potential corresponding to (2.53) is written as

𝜙 = 1
2
𝜂1

( 𝑟̇
𝐹𝐴𝐴

)2
+ 1

2
𝜂2

𝑟̇
𝐹𝐴𝐵

𝑟̇
𝐹𝐵𝐴 + 1

2
𝜂3 𝐺𝐴𝐶

𝑟̇
𝐹𝐶𝐷𝐺

𝐷𝐵 𝑟̇
𝐹𝐴𝐵 . (2.57)

et us introduce the new indices 𝛤 = {𝐴𝐵} such that {11, 12, 13, 21, 22, 23, 31, 32, 33} ↔ {1, 2, 3, 4, 5, 6, 7, 8, 9}. Then the dissipation
potential can be rewritten as 𝜙 = 1

2A
𝛤𝛬 𝖥̇𝛤 𝖥̇𝛬. The tensor A is positive-definite if and only if the 9 × 9 matrix A, which has three

istinct eigenvalues, is positive-definite. Thus, A is positive-definite if and only if

3𝜂1 + 𝜂2 + 𝜂3 > 0 , 𝜂2 + 𝜂3 > 0 , −𝜂2 + 𝜂3 > 0 . (2.58)

.2.7. Remodeling energy
In addition to the strain energy function and dissipation potential, we assume a third energy function that quantifies the tendency

f the material to remodel in response to strain and stress. We call it the remodeling energy and denote it as
𝑟
𝑊 =

𝑟
𝑊 (𝑋,𝐂♭,

𝑟
𝐅,𝐆).

ere, we discuss it for a specific class of remodeling problems, namely fiber reorientation in solids reinforced with one or two
amilies of fibers.

Let us consider a body that has a distribution of fibers. At 𝑋 ∈  the fiber has a 𝐆-unit tangent that is denoted by 𝐍(𝑋, 𝑡). For
his class of remodeling solids, we assume the following forms for the remodeling energy:

𝑟
𝑊 =

𝑟
𝑊 (𝑋,𝐂♭,𝐍,𝐆). In fiber-reinforced

olids, fibers tend to reorient themselves in response to applied forces. In the literature, it has been postulated that fibers orient
hemselves along the direction of maximum stretch or normal stress. Let us assume that at 𝑋 ∈ , there is a 𝐆-unit material vector
(𝑋, 𝑡) that the fiber tends to rotate towards. We call this the fiber preferred direction, which explicitly depends on the state of

train and stress at 𝑋 ∈ . This can be the direction of maximum principal stretch, the direction of maximum tensile stress, etc.
bviously, 𝐌(𝑋, 𝑡) depends on 𝐂♭ either directly or indirectly (through the constitutive equations of the material). Thus, one can
rite the remodeling energy as

𝑟
𝑊 =

𝑟
𝑊 (𝑋,𝐌,𝐍,𝐆) (with an abuse of notation we are using the same symbol

𝑟
𝑊 for this energy).

bviously, this energy is objective as all its arguments are material tensors. It should be noted that 𝐍 and −𝐍 define the same
iber orientation, i.e., 𝐍 ∈ RP2—the projective plane. Similarly, 𝐌 and −𝐌 define the same fiber preferred direction. Therefore,
he remodeling energy must be invariant under either or both transformations 𝐍 ↦ −𝐍, and 𝐌 ↦ −𝐌. One way to ensure this
nvariance is to write (again with an abuse of notation)

𝑟
𝑊 =

𝑟
𝑊 (𝑋,𝐌⊗𝐌,𝐍⊗ 𝐍,𝐆).

xample 2.1. As examples of remodeling energy, let us consider the following two choices
𝑟
𝑊 (𝑋,𝐌,𝐍,𝐆) = 1

2
𝜅𝑀 (𝐌 ⋅ 𝐍)2 ,

𝑟
𝑊 (𝑋,𝐌,𝐍,𝐆) = 𝜅𝑀 |𝐌 ⋅ 𝐍| , (2.59)

where 𝜅𝑀 is a scalar that can, in principle, depend on 𝐂♭, i.e., 𝜅𝑀 = 𝜅𝑀 (𝑋,𝐂♭,𝐆). In our numerical examples in Section 4 we will
assume that 𝜅𝑀 is a material constant.

Let us next consider a body that is reinforced by two families of fibers that are not necessarily mechanically equivalent. At
𝑋 ∈  the fibers have the 𝐆-unit tangent vectors 𝐍1(𝑋, 𝑡) and 𝐍2(𝑋, 𝑡). Let us denote their corresponding fiber preferred directions by
𝐌1(𝑋, 𝑡) and 𝐌2(𝑋, 𝑡), respectively. The remodeling energy has the following form:

𝑟
𝑊 =

𝑟
𝑊 (𝑋,𝐌1⊗𝐌1,𝐌2⊗𝐌2,𝐍1⊗𝐍1,𝐍2⊗𝐍2,𝐆).

As examples of remodeling energy, let us consider the following two choices
𝑟
𝑊 = 1

2
𝜅𝑀1 (𝐌1 ⋅ 𝐍1)2 +

1
2
𝜅𝑀2 (𝐌2 ⋅ 𝐍2)2 ,

𝑟
𝑊 (𝑋,𝐌,𝐍,𝐆) = 𝜅𝑀1 |𝐌1 ⋅ 𝐍1| + 𝜅𝑀2 |𝐌2 ⋅ 𝐍2| , (2.60)

here 𝜅𝑀1 = 𝜅𝑀1(𝑋,𝐂♭,𝐆) and 𝜅𝑀2 = 𝜅𝑀2(𝑋,𝐂♭,𝐆) are scalars. In the numerical examples in Section 4.2, we will assume that the
wo fiber families are mechanically equivalent and 𝜅𝑀1 = 𝜅𝑀2 = 𝜅𝑀 is a constant.

. Balance laws

In this section, we derive the governing equations of remodeling bodies in a variational setting. In addition to the standard
overning equations of nonlinear elasticity, a remodeling equation is derived. Its explicit form for different types of remodeling and
aterial anisotropy classes is given in detail.

.1. Conservation of mass

The mass density field in the initial body is denoted as 𝜌0 = 𝜌0(𝑋). At time 𝑡, mass density at the same material point is denoted
y 𝜌0(𝑋, 𝑡). At 𝑋 ∈  and at time 𝑡 = 0 consider a volume element 𝑑𝑉0(𝑋). Mass of this volume element is 𝑑𝗆 = 𝜌0(𝑋) 𝑑𝑉0(𝑋).
nder the local change of reference configuration

𝑟
𝐅 at 𝑋 ∈ , the volume element is transformed to 𝑑𝑉𝑡(𝑋) =

𝑟
𝐽 (𝑋, 𝑡) 𝑑𝑉0(𝑋),

here
𝑟
𝐽 (𝑋, 𝑡) = det

𝑟
𝐅, and hence, 𝑑𝑉𝑡(𝑋) = (det

𝑟
𝐅) 𝑑𝑉0(𝑋) = 𝑑𝑉0(𝑋). It is assumed that remodeling is mass conserving, i.e., 𝑑𝗆 =
10

0(𝑋) 𝑑𝑉0(𝑋) = 𝜌0(𝑋, 𝑡) 𝑑𝑉𝑡(𝑋) = 𝜌0(𝑋, 𝑡) 𝑑𝑉0(𝑋), and hence, 𝜌0(𝑋, 𝑡) = 𝜌0(𝑋).
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3.2. The Lagrange–d’Alembert principle

The governing equations of a body undergoing finite deformations while remodeling can be derived using the Lagrange–
’Alembert principle. Specifically, one has the two independent variations (𝛿𝜑, 𝛿

𝑟
𝐅). The Lagrangian density is defined as  =

 − 𝑊 + 𝑞
(

det
𝑟
𝐅 − 1

)

, where  = 1
2𝜌𝑜‖V‖

2
g = 1

2𝜌𝑜⟨𝐕,𝐕⟩g is the kinetic energy density, and 𝑞 = 𝑞(𝑋, 𝑡) is a Lagrange multiplier
field corresponding to the internal constraint det

𝑟
𝐅 = 1. According to the Lagrange–d’Alembert variational principle, the physical

configuration of the remodeling body satisfies the following identity (Lanczos, 1962; Marsden and Ratiu, 2013):

𝛿 ∫

𝑡2

𝑡1
∫

 𝑑𝑉 d𝑡 + ∫

𝑡2

𝑡1
∫

𝑩𝑟 ∶𝛿
𝑟
𝐅 𝑑𝑉 d𝑡 + ∫

𝑡2

𝑡1
∫

𝜌𝑜⟨𝑩, 𝛿𝜑⟩𝒈 𝑑𝑉 d𝑡 + ∫

𝑡2

𝑡1
∫𝜕

⟨𝑻 , 𝛿𝜑⟩𝒈 𝑑𝐴 d𝑡 = 0 , (3.1)

for any variation fields 𝛿𝜑 and 𝛿
𝑟
𝐅,10 where 𝑩 and 𝑻 are, respectively, the body force per unit mass and the boundary traction per

unit undeformed area. We next find the Euler–Lagrange equations corresponding to 𝛿𝜑 and 𝛿
𝑟
𝐅 separately.

• 𝛿𝜑 variations:11 Note that 𝛿 = 𝛿 − 𝛿𝑊 . It can be shown that

𝛿 = 𝑑
𝑑𝑡

[

𝜌𝑜⟨𝐕,𝐕⟩g
]

− 𝜌𝑜⟨𝐀, 𝛿𝜑⟩g , (3.2)

where 𝐀 is the acceleration vector. Knowing that 𝛿𝜑(𝑋, 𝑡1) = 𝛿𝜑(𝑋, 𝑡2) = 0, the first term on the right-hand side will not contribute
to the variational principle. Also, note that (Yavari and Golgoon, 2019)

𝛿𝑊 = 𝜕𝑊
𝜕𝐅

∶ 𝛿𝐅 = 𝜕𝑊
𝜕𝐅

∶ ∇𝛿𝜑 , (3.3)

where ∇𝛿𝜑 is the covariant derivative of 𝜑.12 Thus13

−∫
𝛿𝑊 𝑑𝑉 = −∫

[

Div
( 𝜕𝑊
𝜕𝐅

⋅ 𝛿𝜑
)

+
(

Div 𝜕𝑊
𝜕𝐅

)

⋅ 𝛿𝜑
]

𝑑𝑉 = −∫𝜕
⟨𝐠♯ 𝜕𝑊

𝜕𝐅
𝐍̂, 𝛿𝜑⟩𝐠 𝑑𝐴 + ∫

(

Div 𝜕𝑊
𝜕𝐅

)

⋅ 𝛿𝜑 𝑑𝑉 , (3.4)

where 𝐍̂ is the 𝐆-unit normal vector of 𝜕.14 Hence, (3.1) is simplified to read

∫

𝑡2

𝑡1
∫

⟨Div
(

𝐠♯ 𝜕𝑊
𝜕𝐅

)

+ 𝜌𝑜𝐁 − 𝜌𝑜𝐀, 𝛿𝜑⟩𝐠 𝑑𝑉 d𝑡 + ∫

𝑡2

𝑡1
∫𝜕

⟨𝐓 − 𝐠♯ 𝜕𝑊
𝜕𝐅

𝐍̂, 𝛿𝜑⟩𝒈 𝑑𝐴 d𝑡 = 0 . (3.5)

On the Dirichlet boundary 𝜕𝐷, 𝛿𝜑 = 0, and hence

∫

𝑡2

𝑡1
∫

⟨Div
(

𝐠♯ 𝜕𝑊
𝜕𝐅

)

+ 𝜌𝑜𝐁 − 𝜌𝑜𝐀, 𝛿𝜑⟩𝐠 𝑑𝑉 d𝑡 + ∫

𝑡2

𝑡1
∫𝜕𝑁

⟨𝐓 − 𝐠♯ 𝜕𝑊
𝜕𝐅

𝐍̂, 𝛿𝜑⟩𝒈 𝑑𝐴 d𝑡 = 0 , (3.6)

where 𝜕𝑁 is the Neumann boundary.15 Therefore, the variational principle gives us the balance of linear momentum and the
Neumann boundary conditions:

⎧

⎪

⎨

⎪

⎩

Div
(

𝐠♯ 𝜕𝑊
𝜕𝐅

)

+ 𝜌0𝐁 = 𝜌0𝐀 , in  ,

𝐠♯ 𝜕𝑊
𝜕𝐅

𝐍̂ = 𝐓 , on 𝜕𝑁 .
(3.7)

emark 3.1. If the remodeling material is incompressible a term 𝑝(𝐽 − 1) is added to the Lagrangian density. In this case,
 = 𝛿 − 𝛿𝑊 + 𝑝 𝛿𝐽 = 𝛿 − 𝛿𝑊 + 𝑝𝐽 𝐅−1 ∶𝛿𝐅. The Euler–Lagrange equations and natural boundary conditions (3.7) are modified
o read

⎧

⎪

⎨

⎪

⎩

Div
[

−𝑝𝐽 𝐅−1 + 𝐠♯ 𝜕𝑊
𝜕𝐅

]

+ 𝜌0𝐁 = 𝜌0𝐀 , in  ,
[

−𝑝𝐽 𝐅−1 + 𝐠♯ 𝜕𝑊
𝜕𝐅

]

𝐍̂ = 𝐓 , on 𝜕𝑁 .
(3.8)

emark 3.2. As a consequence of the second law of thermodynamics 𝐏 = 𝐠♯ 𝜕𝑊𝜕𝐅 is the first Piola–Kirchhoff stress with components
𝑃 𝑎𝐴 = 𝑔𝑎𝑏 𝜕𝑊

𝜕𝐹 𝑏𝐴
.16 Let us first recall that the Cauchy, the first Piola–Kirchhoff, and the convected stress tensors are related to the

nergy function as

𝐏 = 𝐠♯ 𝜕𝑊
𝜕𝐅

, 𝝈 = 2
𝐽
𝜕𝑊
𝜕𝐠

, 𝜮 = 2
𝐽
𝜕𝑊
𝜕𝐂♭

. (3.9)

10 It is assumed that 𝛿𝜑(𝑋, 𝑡1) = 𝛿𝜑(𝑋, 𝑡2) = 0, and 𝛿
𝑟

𝐅(𝑋, 𝑡1) = 𝛿
𝑟

𝐅(𝑋, 𝑡2) = 𝟎.
11 It should be noted that in the absence of remodeling, the Euler–Lagrange equations corresponding to 𝛿𝜑 variations would be identical to those of classical
yper-elasticity.
12 ∇𝛿𝜑 has coordinates 𝛿𝜑𝑎

|𝐴 = 𝛿𝜑𝑎
|𝑏 𝐹 𝑏

𝐴 = 𝐹 𝑏
𝐴(𝛿𝜑𝑎,𝑏 + 𝛾

𝑎
𝑏𝑐 𝛿𝜑𝑐 ) = 𝛿𝜑𝑎,𝐴 + 𝛾𝑎𝑏𝑐 𝐹 𝑏

𝐴 𝛿𝜑𝑐 .
13 𝐠♯ is the inverse of the spatial metric with components 𝑔𝑎𝑏 such that 𝑔𝑎𝑐 𝑔𝑐𝑏 = 𝛿𝑎𝑏 .
14 This means that ⟨𝐍̂, 𝐍̂⟩𝐆 = 𝑁̂𝐴 𝑁̂𝐵 𝐺𝐴𝐵 = 1.
15 It is assumed that the boundary of the body is the disjoint union of the Dirichlet and Neumann boundary, i.e., 𝜕 = 𝜕𝐷 ⊔ 𝜕𝑁.
16 The second law will be discussed in Section 3.4, but it would be more convenient to discuss the balance of linear momentum in terms of different stress
11

easures here.
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They are also related as 𝐒 = 𝐅−1𝐏 = 𝐽𝜮 = 𝐽𝐅−1𝝈𝐅−⋆. The balance of linear momentum (3.7)1, i.e., Div𝐏 + 𝜌0𝐁 = 𝜌0𝐀, in terms
of the Cauchy stress reads div𝐠 𝝈 + 𝜌𝐛 = 𝜌𝐚, where 𝜌, 𝐛 = 𝐁◦𝜑−1, and 𝐚 are spatial mass density, spatial body force, and spatial
acceleration. div𝐠 𝝈 and Div𝐏 have the components 𝜎𝑎𝑏

|𝑏 and 𝑃 𝑎𝐴
|𝐴, respectively, defined as

𝜎𝑎𝑏
|𝑏 = 𝜎𝑎𝑏,𝑏 + 𝜎𝑎𝑐𝛾𝑏𝑐𝑏 + 𝜎𝑐𝑏𝛾𝑎𝑐𝑏 , 𝑃 𝑎𝐴

|𝐴 = 𝑃 𝑎𝐴,𝐴 + 𝑃 𝑎𝐵𝛤𝐴𝐴𝐵 + 𝑃 𝑐𝐴𝐹 𝑏𝐴𝛾𝑎𝑏𝑐 . (3.10)

ne can write the balance of linear momentum entirely with respect to the reference configuration by pulling back the spatial
alance of linear momentum to the reference configuration, i.e., 𝜑∗

𝑡
(

div𝐠 𝝈
)

+ 𝜑∗
𝑡 (𝜌𝐛) = 𝜑∗

𝑡 (𝜌𝐚). Thus (Simo et al., 1988)

div𝐂♭ 𝜮 + 𝜚BBB𝑡 = 𝜚AAA 𝑡, (3.11)

here 𝜮 = 𝜑∗
𝑡 𝝈 is the convected stress, BBB𝑡 = 𝜑∗

𝑡 𝐛 is the convected body force, and 𝜚 = 𝜌◦𝜑𝑡.

• 𝛿 𝑟𝐅 variations: For these variations, 𝛿 = 0. One can write

𝛿𝑊 = 𝜕𝑊
𝜕𝐆

∶ 𝛿𝐆 + 𝜕𝑊
𝜕𝜦

∶𝛿𝜦 . (3.12)

The collection of structural tenors depends on the type of anisotropy. For example, for transversely isotopic solids 𝜦 = 𝐍⊗𝐍,
and hence

𝛿𝜦 = −
𝑟
𝐅−1𝛿

𝑟
𝐅𝐍⊗ 𝐍 − 𝐍⊗

𝑟
𝐅−1𝛿

𝑟
𝐅𝐍 . (3.13)

Thus
𝜕𝑊
𝜕𝜦

∶𝛿𝜦 = 2
𝑟
𝐅−⋆ 𝜕𝑊

𝜕𝜦
𝐍⊗ 𝐍∶𝛿

𝑟
𝐅 . (3.14)

Note that 𝛿𝐆 = 𝛿(
𝑟
𝐅⋆𝐆̊

𝑟
𝐅) = (𝛿

𝑟
𝐅)⋆𝐆̊

𝑟
𝐅 +

𝑟
𝐅⋆𝐆̊𝛿

𝑟
𝐅. Hence

𝜕𝑊
𝜕𝐆

∶
[

(𝛿
𝑟
𝐅)⋆𝐆̊

𝑟
𝐅 +

𝑟
𝐅⋆𝐆̊𝛿

𝑟
𝐅
]

= 2𝐆̊
𝑟
𝐅⋆ 𝜕𝑊

𝜕𝐆
∶ 𝛿

𝑟
𝐅 = 2

𝑟
𝐅−⋆𝐆 𝜕𝑊

𝜕𝐆
∶ 𝛿

𝑟
𝐅 . (3.15)

The variation of det
𝑟
𝐅 is calculated as 𝛿(det

𝑟
𝐅) = (det

𝑟
𝐅)

𝑟
𝐅−⋆ ∶𝛿

𝑟
𝐅 =

𝑟
𝐅−⋆ ∶𝛿

𝑟
𝐅. Thus, (3.1) is simplified to read

∫

𝑡2

𝑡1
∫

[

−2
𝑟
𝐅−⋆𝐆 𝜕𝑊

𝜕𝐆
− 2

𝑟
𝐅−⋆ 𝜕𝑊

𝜕𝜦
𝐍⊗ 𝐍 + 𝑞

𝑟
𝐅−⋆ −

𝜕𝜙

𝜕
𝑟̇
𝐅

]

∶ 𝛿
𝑟
𝐅 𝑑𝑉 d𝑡 = 0 . (3.16)

Therefore, the remodeling equation for transversely isotropic solids reads
𝜕𝜙

𝜕
𝑟̇
𝐅

= 𝑞
𝑟
𝐅−⋆ − 2

𝑟
𝐅−⋆𝐆 𝜕𝑊

𝜕𝐆
− 2

𝑟
𝐅−⋆ 𝜕𝑊

𝜕𝜦
𝐍⊗ 𝐍 . (3.17)

In the case of isotropic solids, this is simplified as17

𝜕𝜙

𝜕
𝑟̇
𝐅

= 𝑞
𝑟
𝐅−⋆ − 2

𝑟
𝐅−⋆𝐆 𝜕𝑊

𝜕𝐆
. (3.18)

Next, we rewrite the remodeling equation more explicitly in terms of the integrity bases for isotropic, transversely isotropic,
rthotropic, and monoclinic solids.

.2.1. Remodeling equation for isotropic solids
The remodeling equation can be written more explicitly in terms of the principal invariants. One writes

𝜕𝑊
𝜕𝐆

= 𝜕𝑊
𝜕𝐼1

𝜕𝐼1
𝜕𝐆

+ 𝜕𝑊
𝜕𝐼2

𝜕𝐼2
𝜕𝐆

+ 𝜕𝑊
𝜕𝐼3

𝜕𝐼3
𝜕𝐆

= 𝑊1
𝜕𝐼1
𝜕𝐆

+𝑊2
𝜕𝐼2
𝜕𝐆

+𝑊3
𝜕𝐼3
𝜕𝐆

. (3.19)

ote that
𝜕𝐼1
𝜕𝐆

= −𝐆♯𝐂♭𝐆♯ = −𝐂♯ . (3.20)

ecall that 𝐼2 =
1
2

(

𝐼21 − tr 𝐂2) = 1
2

(

𝐼21 − C𝐴𝐵 C𝐵𝐴
)

. Thus

𝜕𝐼2
𝜕𝐆

= 𝐼1
𝜕𝐼1
𝜕𝐆

− 1
2
𝜕 tr 𝐂2

𝜕𝐆
= −𝐼1𝐂♯ + 𝐂2♯ . (3.21)

inally
𝜕𝐼3
𝜕𝐆

= −𝐼3𝐆♯ . (3.22)

17 Demirkoparan et al. (2014) considered a multiplicative decomposition of the deformation gradient 𝐅 = 𝐅̂𝐅∗, where 𝐅̂ is the elastic part of deformation
gradient and 𝐅∗ can describe, for example, the so-called structured deformations (Del Piero and Owen, 1993; Deseri and Owen, 2003). It is assumed that (unlike
anelasticity) the energy function explicitly depends on both 𝐅̂ and 𝐅∗. The governing equations of the theory are derived variationally. The Euler–Lagrange
equations corresponding to the variations of 𝐅∗ are referred to as internal balance equations. This is, however, different from the present remodeling theory that

𝑟 𝑟
12

considers 𝐅 as an internal variable and assumes the existence of a dissipation potential that explicitly depends on both 𝐅 and its time derivative.
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Therefore

−2 𝜕𝑊
𝜕𝐆

𝐆
𝑟
𝐅−1 = 2𝐼3𝑊3

𝑟
𝐅−1 + 2(𝑊1 + 𝐼1𝑊2)𝐂

𝑟
𝐅−1 − 2𝑊2𝐂2 𝑟𝐅−1 . (3.23)

ence, the remodeling equation is simplified to read
𝜕𝜙

𝜕
𝑟̇
𝐅

=
[

(𝑞 + 2𝐼3𝑊3)𝐈 + 2(𝑊1 + 𝐼1𝑊2)𝐂 − 2𝑊2𝐂2] 𝑟
𝐅−1 . (3.24)

3.2.2. Remodeling equation for transversely isotropic solids
For a transversely isotropic solid

𝛿𝑊 =
5
∑

𝑗=1

𝜕𝑊
𝜕𝐼𝑗

𝛿𝐼𝑗 =
5
∑

𝑗=1
𝑊𝑗 𝛿𝐼𝑗 , (3.25)

here

𝛿𝐼1 = −𝐂♯ ∶𝛿𝐆 , 𝛿𝐼2 =
(

−𝐼1𝐂♯ + 𝐂2♯
)

∶𝛿𝐆 , 𝛿𝐼3 = −𝐼3𝐆♯ ∶𝛿𝐆 . (3.26)

ote that 𝛿𝐆 = 𝛿
𝑟
𝐅⋆

𝑟
𝐅−⋆𝐆 +𝐆

𝑟
𝐅−1𝛿

𝑟
𝐅. Thus

𝛿𝐼1 = −2
𝑟
𝐅−⋆𝐂∶𝛿

𝑟
𝐅 , 𝛿𝐼2 =

[

−𝐼1
𝑟
𝐅−⋆𝐂 +

𝑟
𝐅−⋆𝐂2

]

∶𝛿
𝑟
𝐅 , 𝛿𝐼3 = −𝐼3

𝑟
𝐅−⋆ ∶𝛿

𝑟
𝐅 . (3.27)

lso

𝛿𝐼4 = −2
[ 𝑟
𝐅−⋆𝐂♭𝐍⊗ 𝐍

]

∶𝛿
𝑟
𝐅 , 𝛿𝐼5 = −2

[ 𝑟
𝐅−⋆𝐂2♭𝐍⊗ 𝐍 +

𝑟
𝐅−⋆𝐂♭𝐍⊗ 𝐂𝐍

]

∶𝛿
𝑟
𝐅 . (3.28)

Thus

−𝛿𝑊 = 2
[

𝐼3𝑊3
𝑟
𝐅−⋆ + (𝑊1 + 𝐼1𝑊2)

𝑟
𝐅−⋆𝐂 −𝑊2

𝑟
𝐅−⋆𝐂2 +𝑊4

𝑟
𝐅−⋆𝐂♭𝐍⊗ 𝐍 +𝑊5

( 𝑟
𝐅−⋆𝐂2♭𝐍⊗ 𝐍 +

𝑟
𝐅−⋆𝐂♭𝐍⊗ 𝐂𝐍

) ]

∶𝛿
𝑟
𝐅 .

(3.29)

herefore, the remodeling equation for a transversely isotropic solid is written as

𝜕𝜙

𝜕
𝑟̇
𝐅

= (𝑞 + 2𝐼3𝑊3)
𝑟
𝐅−⋆ + 2(𝑊1 + 𝐼1𝑊2)

𝑟
𝐅−⋆𝐂 − 2𝑊2

𝑟
𝐅−⋆𝐂2 + 2𝑊4

𝑟
𝐅−⋆𝐂♭𝐍⊗ 𝐍 + 2𝑊5

( 𝑟
𝐅−⋆𝐂2♭𝐍⊗ 𝐍 +

𝑟
𝐅−⋆𝐂♭𝐍⊗ 𝐂𝐍

)

.

(3.30)

.2.3. Remodeling equation for orthotropic solids
For an orthotropic solid

𝛿𝑊 =
7
∑

𝑗=1

𝜕𝑊
𝜕𝐼𝑗

𝛿𝐼𝑗 =
7
∑

𝑗=1
𝑊𝑗 𝛿𝐼𝑗 , (3.31)

here 𝛿𝐼1, 𝛿𝐼2, and 𝛿𝐼3 are given in (3.27), and

𝛿𝐼4 = −2
[ 𝑟
𝐅−⋆𝐂♭𝐍1 ⊗ 𝐍1

]

∶𝛿
𝑟
𝐅 , 𝛿𝐼5 = −2

[ 𝑟
𝐅−⋆𝐂2♭𝐍1 ⊗ 𝐍1 +

𝑟
𝐅−⋆𝐂♭𝐍1 ⊗ 𝐂𝐍1

]

∶𝛿
𝑟
𝐅 ,

𝛿𝐼6 = −2
[ 𝑟
𝐅−⋆𝐂♭𝐍2 ⊗ 𝐍2

]

∶𝛿
𝑟
𝐅 , 𝛿𝐼7 = −2

[ 𝑟
𝐅−⋆𝐂2♭𝐍2 ⊗ 𝐍2 +

𝑟
𝐅−⋆𝐂♭𝐍2 ⊗ 𝐂𝐍2

]

∶𝛿
𝑟
𝐅 .

(3.32)

hus

−𝛿𝑊 = 2
[

𝐼3𝑊3
𝑟
𝐅−⋆ + (𝑊1 + 𝐼1𝑊2)

𝑟
𝐅−⋆𝐂 −𝑊2

𝑟
𝐅−⋆𝐂2 +𝑊4

𝑟
𝐅−⋆𝐂♭𝐍1 ⊗ 𝐍1

+𝑊5

( 𝑟
𝐅−⋆𝐂2♭𝐍1 ⊗ 𝐍1 +

𝑟
𝐅−⋆𝐂♭𝐍1 ⊗ 𝐂𝐍1

)

+𝑊6
𝑟
𝐅−⋆𝐂♭𝐍2 ⊗ 𝐍2

+𝑊7

( 𝑟
𝐅−⋆𝐂2♭𝐍2 ⊗ 𝐍2 +

𝑟
𝐅−⋆𝐂♭𝐍2 ⊗ 𝐂𝐍2

) ]

∶𝛿
𝑟
𝐅 .

(3.33)

herefore, the remodeling equation for a transversely isotropic solid is written as
𝜕𝜙

𝜕
𝑟̇
𝐅

= (𝑞 + 2𝐼3𝑊3)
𝑟
𝐅−⋆ + 2(𝑊1 + 𝐼1𝑊2)

𝑟
𝐅−⋆𝐂 − 2𝑊2

𝑟
𝐅−⋆𝐂2 + 2𝑊4

𝑟
𝐅−⋆𝐂♭𝐍1 ⊗ 𝐍1

+ 2𝑊5

( 𝑟
𝐅−⋆𝐂2♭𝐍1 ⊗ 𝐍1 +

𝑟
𝐅−⋆𝐂♭𝐍1 ⊗ 𝐂𝐍1

)

+ 2𝑊6
𝑟
𝐅−⋆𝐂♭𝐍2 ⊗ 𝐍2

+ 2𝑊
( 𝑟
𝐅−⋆𝐂2♭𝐍 ⊗ 𝐍 +

𝑟
𝐅−⋆𝐂♭𝐍 ⊗ 𝐂𝐍

)

.

(3.34)
13

7 2 2 2 2
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3.2.4. Remodeling equation for monoclinic solids
For a monoclinic solid

𝛿𝑊 =
9
∑

𝑗=1

𝜕𝑊
𝜕𝐼𝑗

𝛿𝐼𝑗 =
9
∑

𝑗=1
𝑊𝑗 𝛿𝐼𝑗 , (3.35)

here 𝛿𝐼1, 𝛿𝐼2, and 𝛿𝐼3 are given in (3.27), 𝛿𝐼4,… , 𝛿𝐼7 are given in (3.32), and

𝛿𝐼8 = −
𝑟
𝐅−⋆

[

𝐼8


(

𝐍♭2 ⊗ 𝐍1 + 𝐍♭1 ⊗ 𝐍2

)

+  𝐂♭
(

𝐍2 ⊗ 𝐍1 + 𝐍1 ⊗ 𝐍2
)

]

∶𝛿
𝑟
𝐅 ,

𝛿𝐼9 = −2
𝑟
𝐅−⋆

(

𝐍♭2 ⊗ 𝐍1 + 𝐍♭1 ⊗ 𝐍2

)

∶𝛿
𝑟
𝐅 .

(3.36)

herefore, the remodeling equation for a monoclinic solid is written as
𝜕𝜙

𝜕
𝑟̇
𝐅

= (𝑞 + 2𝐼3𝑊3)
𝑟
𝐅−⋆ + 2(𝑊1 + 𝐼1𝑊2)

𝑟
𝐅−⋆𝐂 − 2𝑊2

𝑟
𝐅−⋆𝐂2 + 2𝑊4

𝑟
𝐅−⋆𝐂♭𝐍1 ⊗ 𝐍1

+ 2𝑊5

( 𝑟
𝐅−⋆𝐂2♭𝐍1 ⊗ 𝐍1 +

𝑟
𝐅−⋆𝐂♭𝐍1 ⊗ 𝐂𝐍1

)

+ 2𝑊6
𝑟
𝐅−⋆𝐂♭𝐍2 ⊗ 𝐍2

+ 2𝑊7

( 𝑟
𝐅−⋆𝐂2♭𝐍2 ⊗ 𝐍2 +

𝑟
𝐅−⋆𝐂♭𝐍2 ⊗ 𝐂𝐍2

)

+ 2𝑊9 
𝑟
𝐅−⋆

(

𝐍♭2 ⊗ 𝐍1 + 𝐍♭1 ⊗ 𝐍2

)

+𝑊8
𝑟
𝐅−⋆

[

𝐼8


(

𝐍♭2 ⊗ 𝐍1 + 𝐍♭1 ⊗ 𝐍2

)

+  𝐂♭
(

𝐍2 ⊗ 𝐍1 + 𝐍1 ⊗ 𝐍2
)

]

.

(3.37)

.2.5. Remodeling equation for 𝑆𝑂(3)-remodeling
A special class of remodeling is when, at every point, the remodeling tensor is a rotation. In this case 𝐆 =

𝑟
𝐅⋆𝐆̊

𝑟
𝐅 = 𝐆̊.

hus, 𝛿𝐆 = 𝟎. This, in particular, implies that 𝑊1, 𝑊2, and 𝑊3 do not contribute to the remodeling equation. Notice that
𝑟
𝐅⋆𝐆̊

𝑟
𝐅 +

𝑟
𝐅⋆𝐆̊𝛿

𝑟
𝐅 = 𝟎, or (

𝑟
𝐅⋆𝐆̊𝛿

𝑟
𝐅)⋆ +

𝑟
𝐅⋆𝐆̊𝛿

𝑟
𝐅 = 𝟎. Thus, the tensor 𝜴 =

𝑟
𝐅⋆𝐆̊𝛿

𝑟
𝐅 is antisymmetric.

emark 3.3. Assuming that the initial body is stress-free, 𝐆̊ is a flat metric (its Riemann curvature vanishes). Therefore, from
=

𝑟
𝐅⋆𝐆̊

𝑟
𝐅 = 𝐆̊ it is concluded that in 𝑆𝑂(3)-remodeling the material metric remains flat. This implies that 𝑆𝑂(3)-remodeling does

ot induce residual stresses for simply-connected bodies.

ransversely isotropic solids. For transversely isotropic solids, the elastic energy contributes to the remodeling equation through the
nvariants 𝐼4 and 𝐼5. In order to directly take into account this constraint, (3.28) can be rewritten in terms of 𝜴. Note that

𝑟
𝐅−⋆𝐂♭𝐍⊗ 𝐍∶𝛿

𝑟
𝐅 =

𝑟
𝐅−⋆𝐂♭𝐍⊗ 𝐍∶𝐆♯ 𝑟𝐅−⋆ 𝑟

𝐅⋆𝐆𝛿
𝑟
𝐅 =

𝑟
𝐅−⋆𝐆♯ 𝑟𝐅−1𝐂♭𝐍⊗ 𝐍∶𝜴 = 𝐆♯𝐂♭𝐍⊗ 𝐍∶𝜴 = 𝐂𝐍⊗ 𝐍∶𝜴

= 1
2
(𝐂𝐍⊗ 𝐍 − 𝐍⊗ 𝐂𝐍)∶𝜴 ,

(3.38)

here anti-symmetry of 𝜴 was used. The two terms that appear in 𝛿𝐼5 are simplified as follows. The first term is rewritten as
𝑟
𝐅−⋆𝐂2♭𝐍⊗ 𝐍∶𝛿

𝑟
𝐅 =

𝑟
𝐅−⋆𝐂2♭𝐍⊗ 𝐍∶𝐆♯ 𝑟𝐅−⋆ 𝑟

𝐅⋆𝐆𝛿
𝑟
𝐅 =

𝑟
𝐅−⋆𝐆♯ 𝑟𝐅−1𝐂2♭𝐍⊗ 𝐍∶

𝑟
𝐅⋆𝐆𝛿

𝑟
𝐅 = 𝐆♯𝐂2♭𝐍⊗ 𝐍∶𝜴 = 𝐂2𝐍⊗ 𝐍∶𝜴

= 1
2
(

𝐂2𝐍⊗ 𝐍 − 𝐍⊗ 𝐂2𝐍
)

∶𝜴 .
(3.39)

or the second term
𝑟
𝐅−⋆𝐂♭𝐍⊗ 𝐂𝐍∶𝛿

𝑟
𝐅 =

𝑟
𝐅−⋆𝐂♭𝐍⊗ 𝐂𝐍∶𝐆♯ 𝑟𝐅−⋆ 𝑟

𝐅⋆𝐆𝛿
𝑟
𝐅 =

𝑟
𝐅−⋆𝐆♯ 𝑟𝐅−1𝐂♭𝐍⊗ 𝐂𝐍∶

𝑟
𝐅⋆𝐆𝛿

𝑟
𝐅 = 𝐆♯𝐂♭𝐍⊗ 𝐂𝐍∶𝜴 = 𝐂𝐍⊗ 𝐂𝐍∶𝜴

= 𝟎 .
(3.40)

Thus

𝛿𝐼4 = (𝐍⊗ 𝐂𝐍 − 𝐂𝐍⊗ 𝐍)∶𝜴 , 𝛿𝐼5 =
(

𝐍⊗ 𝐂2𝐍 − 𝐂2𝐍⊗ 𝐍
)

∶𝜴 . (3.41)

The contribution of the dissipation potential to the variational principle is simplified as

𝜕𝜙

𝜕
𝑟̇
𝐅
∶𝛿

𝑟
𝐅 =

𝜕𝜙

𝜕
𝑟̇
𝐅
∶𝐆♯ 𝑟𝐅−⋆ 𝑟

𝐅⋆𝐆𝛿
𝑟
𝐅 =

𝑟
𝐅−1𝐆♯ 𝜕𝜙

𝜕
𝑟̇
𝐅
∶
𝑟
𝐅⋆𝐆𝛿

𝑟
𝐅 =

𝑟
𝐅−1𝐆♯ 𝜕𝜙

𝜕
𝑟̇
𝐅
∶𝜴 = 1

2

[

𝑟
𝐅−1𝐆♯ 𝜕𝜙

𝜕
𝑟̇
𝐅

−

(

𝜕𝜙

𝜕
𝑟̇
𝐅

)⋆

𝐆♯ 𝑟𝐅−⋆

]

∶𝜴 . (3.42)

herefore, the 𝑆𝑂(3)-remodeling equation is simplified to read

𝑟
𝐅−1𝐆♯ 𝜕𝜙

𝜕
𝑟̇
𝐅

−

(

𝜕𝜙

𝜕
𝑟̇
𝐅

)⋆

𝐆♯ 𝑟𝐅−⋆ + 2𝑊4 (𝐍⊗ 𝐂𝐍 − 𝐂𝐍⊗ 𝐍) + 2𝑊5
(

𝐍⊗ 𝐂2𝐍 − 𝐂2𝐍⊗ 𝐍
)

= 𝟎 . (3.43)

hen (2.56) is assumed, the remodeling equation is simplified to read

𝜂1(tr
𝑟̇
𝐅)

( 𝑟
𝐅−1𝐆♯ −𝐆♯ 𝑟𝐅−⋆

)

+ 𝜂2
( 𝑟
𝐅−1𝐆♯ 𝑟̇𝐅⋆ −

𝑟̇
𝐅𝐆♯ 𝑟𝐅−⋆

)

+ 𝜂3
( 𝑟
𝐅−1 𝑟̇𝐅𝐆♯ 𝑟̇𝐅⋆ −𝐆♯ 𝑟̇𝐅⋆

𝑟
𝐅−⋆

)

+ 2𝑊4 (𝐍⊗ 𝐂𝐍 − 𝐂𝐍⊗ 𝐍) + 2𝑊5
(

𝐍⊗ 𝐂2𝐍 − 𝐂2𝐍⊗ 𝐍
)

= 𝟎 .
(3.44)

he initial condition for the remodeling tensor is
𝑟
𝐅(𝑋, 0) = 𝐈.
14
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Remark 3.4. It should be noted that 𝐍 and −𝐍 define the same fiber orientation, i.e., 𝐍 ∈ RP2—the projective plane. We see that
the right-hand side of (3.44) is indeed invariant under the transformation 𝐍 ↦ −𝐍.

Orthotropic solids. For orthotropic solids, the elastic energy contributes to the remodeling equation through the invariants 𝐼4, 𝐼5,
𝐼6, and 𝐼7. The kinetic equation reads

𝑟
𝐅−1𝐆♯ 𝜕𝜙

𝜕
𝑟̇
𝐅

−

(

𝜕𝜙

𝜕
𝑟̇
𝐅

)⋆

𝐆♯ 𝑟𝐅−⋆ + 2𝑊4
(

𝐍1 ⊗ 𝐂𝐍1 − 𝐂𝐍1 ⊗ 𝐍1
)

+ 2𝑊5
(

𝐍1 ⊗ 𝐂2𝐍1 − 𝐂2𝐍1 ⊗ 𝐍1
)

+ 2𝑊6
(

𝐍2 ⊗ 𝐂𝐍2 − 𝐂𝐍2 ⊗ 𝐍2
)

+ 2𝑊7
(

𝐍2 ⊗ 𝐂2𝐍2 − 𝐂2𝐍2 ⊗ 𝐍2
)

= 𝟎 .

(3.45)

onoclinic solids. It is straightforward to show that 𝛿 = 0, and hence 𝛿𝐼9 = 0. Also

𝛿𝐼8 = 
[

𝐍1 ⊗ 𝐂𝐍2 + 𝐍2 ⊗ 𝐂𝐍2 −
(

𝐂𝐍2 ⊗ 𝐍1 + 𝐂𝐍1 ⊗ 𝐍2
)]

∶𝜴 . (3.46)

he kinetic equation is written as

𝑟
𝐅−1𝐆♯ 𝜕𝜙

𝜕
𝑟̇
𝐅

−

(

𝜕𝜙

𝜕
𝑟̇
𝐅

)⋆

𝐆♯ 𝑟𝐅−⋆ + 2𝑊4
(

𝐍1 ⊗ 𝐂𝐍1 − 𝐂𝐍1 ⊗ 𝐍1
)

+ 2𝑊5
(

𝐍1 ⊗ 𝐂2𝐍1 − 𝐂2𝐍1 ⊗ 𝐍1
)

+ 2𝑊6
(

𝐍2 ⊗ 𝐂𝐍2 − 𝐂𝐍2 ⊗ 𝐍2
)

+ 2𝑊7
(

𝐍2 ⊗ 𝐂2𝐍2 − 𝐂2𝐍2 ⊗ 𝐍2
)

+ 2𝑊8
[

𝐍1 ⊗ 𝐂𝐍2 + 𝐍2 ⊗ 𝐂𝐍2 −
(

𝐂𝐍2 ⊗ 𝐍1 + 𝐂𝐍1 ⊗ 𝐍2
)]

= 𝟎 .

(3.47)

.2.6. Remodeling equation for fiber reorientation: A single family of fibers
So far, we have written the remodeling equation explicitly in terms of the remodeling tensor

𝑟
𝐅. Recall that 𝐍(𝑋, 𝑡) =

𝑟 ∗(𝑋, 𝑡) 𝐍̊(𝑋) =
𝑟
𝐅−1(𝑋, 𝑡)𝐍̊(𝑋), and hence

𝑑𝐍
𝑑𝑡

= −
𝑟
𝐅−1 𝑟̇𝐅

𝑟
𝐅−1𝐍̊ = −

𝑟
𝐅−1 𝑟̇𝐅𝐍 . (3.48)

Instead of assuming that
𝑟
𝐅 is the independent remodeling field, one can use 𝐍 directly. In this case, instead of (2.50) one can assume

he following dissipation potential

𝜙(𝑋,𝐅,𝐍, 𝐍̇,𝐆, 𝐠) = 1
2
𝐍̇ ⋅ B(𝑋,𝐅,

𝑒
𝐅,𝐆,𝐍⊗ 𝐍, 𝐠) ⋅ 𝐍̇ = 1

2
𝑁̇𝐴 𝑁̇𝐵 𝖡𝐴𝐵 , (3.49)

here B(𝑋,𝐅,
𝑒
𝐅,𝐆,𝐍 ⊗ 𝐍, 𝐠) is a positive-definite isotropic second-order tensor. Objectivity implies that B(𝑋,𝐅,

𝑒
𝐅,𝐆,𝐍 ⊗ 𝐍, 𝐠) =

B̂(𝑋,𝐂♭,
𝑒
𝐂♭,𝐆,𝐍⊗𝐍). For the sake of simplicity, we can assume that B = B̂(𝑋,𝐂♭,𝐆,𝐍⊗𝐍). Knowing that B̂ is an isotropic function

of its arguments, we conclude that B̂ = 𝐾(𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5)𝐆. Thus, 𝜙 = 1
2𝐾(𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5)⟨𝐍̇, 𝐍̇⟩𝐆.

emodeling energy. In addition to the elastic energy, let us consider a remodeling energy
𝑟
𝑊 =

𝑟
𝑊 (𝑋,𝐂♭,𝐍,𝐆) that quantifies the

endency of the fibers to orient themselves along a particular direction, e.g., the direction of maximum stretch or stress. Thus, the
agrangian density is defined as  =  −𝑊 −

𝑟
𝑊 + 𝑞𝑛

(

𝐍 ⋅𝐍− 1
)

, where 𝑞𝑛 = 𝑞𝑛(𝑋, 𝑡) is a Lagrange multiplier field corresponding to
he internal constraint 𝐍 ⋅ 𝐍 = 1. The two independent variations are now (𝛿𝜑, 𝛿𝐍).

For 𝛿𝐍 variations, 𝛿 = −𝛿𝑊 − 𝛿
𝑟
𝑊 + 2𝑞𝑛𝐍♭ ⋅ 𝛿𝐍. Hence, (3.1) is simplified to read

∫

𝑡2

𝑡1
∫

[

−𝑊4
𝜕𝐼4
𝜕𝐍

−𝑊5
𝜕𝐼5
𝜕𝐍

− 𝜕
𝑟
𝑊
𝜕𝐍

+ 2𝑞𝑛𝐍♭ −
𝜕𝜙
𝜕𝐍̇

]

⋅ 𝛿𝐍 𝑑𝑉 d𝑡 = 0 . (3.50)

Thus, the remodeling equation reads

𝜕𝜙
𝜕𝐍̇

= 2𝑞𝑛𝐍♭ −
𝜕

𝑟
𝑊
𝜕𝐍

−𝑊4
𝜕𝐼4
𝜕𝐍

−𝑊5
𝜕𝐼5
𝜕𝐍

. (3.51)

But 𝜕𝐼4
𝜕𝐍 = 2𝐂♭ ⋅ 𝐍, 𝜕𝐼5

𝜕𝐍 = 2𝐂2♭ ⋅ 𝐍, and hence

𝜕𝜙
𝜕𝐍̇

= 2𝑞𝑛𝐍♭ −
𝜕

𝑟
𝑊
𝜕𝐍

− 2𝑊4 𝐂♭ ⋅ 𝐍 − 2𝑊5 𝐂2♭ ⋅ 𝐍 . (3.52)

liminating 𝑞𝑛, the remodeling equation can be rewritten as

𝐆♯ 𝜕𝜙
𝜕𝐍̇

−
⟨

𝜕𝜙
𝜕𝐍̇

,𝐍
⟩

𝐍 =

⟨

𝜕
𝑟
𝑊
𝜕𝐍

,𝐍
⟩

𝐍 − 𝜕
𝑟
𝑊
𝜕𝐍

+ 2𝑊4(𝐼4𝐍 − 𝐂 ⋅ 𝐍) + 2𝑊5(𝐼5𝐍 − 𝐂2 ⋅ 𝐍) . (3.53)

or the dissipation potential (3.49), 𝜕𝜙
𝜕𝐍̇ = B ⋅ 𝐍̇ = 𝐾 𝐍̇♭, and one obtains

𝐾
[

𝐍̇ −
(

𝐍⋅ 𝐍̇
)

𝐍
]

=

⟨

𝜕
𝑟
𝑊
𝜕𝐍

,𝐍
⟩

𝐍 −𝐆♯ 𝜕
𝑟
𝑊
𝜕𝐍

+ 2𝑊4(𝐼4𝐍 − 𝐂 ⋅ 𝐍) + 2𝑊5(𝐼5𝐍 − 𝐂2 ⋅ 𝐍) . (3.54)

s 𝐍 is a unit vector, 𝐍⋅ 𝐍̇ = 0, and hence the remodeling equation is simplified to read

𝐾𝐍̇ =

⟨

𝜕
𝑟
𝑊 ,𝐍

⟩

𝐍 −𝐆♯ 𝜕
𝑟
𝑊 + 2𝑊4(𝐼4𝐍 − 𝐂 ⋅ 𝐍) + 2𝑊5(𝐼5𝐍 − 𝐂2 ⋅ 𝐍) . (3.55)
15
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Example 3.1. In the literature, the following reorientation kinetic equation has been suggested and used (Menzel, 2005; Melnik
nd Goriely, 2013)

𝑑𝐍(𝑋, 𝑡)
𝑑𝑡

= 1
𝜏

[

𝐍𝐂
max(𝑋, 𝑡) −

(

𝐍𝐂
max(𝑋, 𝑡) ⋅ 𝐍(𝑋, 𝑡)

)

𝐍(𝑋, 𝑡)
]

, (3.56)

where 𝜏 is a relaxation time, and 𝐍𝐂
max is a unit vector along the maximum stretch at 𝑋 ∈ . Note that 𝐍 = 𝐍𝐂

max is an equilibrium
point of the above ODE. Let us consider the remodeling energy

𝑟
𝑊 (𝑋,𝐂♭,𝐍,𝐆) = 𝜅𝑀 𝐌 ⋅𝐍, where 𝜅𝑀 is a scalar and 𝐌 is some unit

vector that explicitly depends on 𝐂♭. For this choice, the remodeling equation is simplified to read

𝐾𝐍̇ = 𝜅𝑀 [(𝐌 ⋅ 𝐍)𝐍 −𝐌] + 2𝑊4(𝐼4𝐍 − 𝐂 ⋅ 𝐍) + 2𝑊5(𝐼5𝐍 − 𝐂2 ⋅ 𝐍) . (3.57)

For the choice 𝐌 = 𝐍𝐂
max, this is a generalization of the remodeling equation suggested by Menzel (2005). It should be noted that

the remodeling equation proposed in Menzel (2005) is not invariant under the transformation 𝐍𝐂
max ↦ −𝐍𝐂

max. Similarly, the term
𝜅𝑀 [(𝐌 ⋅ 𝐍)𝐍 −𝐌] is not invariant under the transformation 𝐌 ↦ −𝐌 because

𝑟
𝑊 (𝑋,𝐂♭,𝐍,𝐆) = 𝜅𝑀 𝐌 ⋅ 𝐍 is not an acceptable

remodeling energy (see Section 2.2.7). For the remodeling energy
𝑟
𝑊 (𝑋,𝐂♭,𝐍,𝐆) = 1

2𝜅𝑀 (𝐌 ⋅ 𝐍)2, the kinetic equation reads

𝐾𝐍̇ = 𝜅𝑀 (𝐌 ⋅ 𝐍) [(𝐌 ⋅ 𝐍)𝐍 −𝐌] + 2𝑊4(𝐼4𝐍 − 𝐂 ⋅ 𝐍) + 2𝑊5(𝐼5𝐍 − 𝐂2 ⋅ 𝐍) . (3.58)

imilarly, for the remodeling energy
𝑟
𝑊 (𝑋,𝐂♭,𝐍,𝐆) = 𝜅𝑀 |𝐌 ⋅ 𝐍|, the kinetic equation reads

𝐾𝐍̇ = 𝜅𝑀 sgn(𝐌 ⋅ 𝐍) [(𝐌 ⋅ 𝐍)𝐍 −𝐌] + 2𝑊4(𝐼4𝐍 − 𝐂 ⋅ 𝐍) + 2𝑊5(𝐼5𝐍 − 𝐂2 ⋅ 𝐍) , (3.59)

here sgn is the sign function.

emark 3.5. In order to understand the remodeling equation better, let us consider the spectral decomposition of 𝐂♭:

𝐂♭ = 𝜆21𝐄1 ⊗ 𝐄1 + 𝜆22𝐄2 ⊗ 𝐄2 + 𝜆31𝐄3 ⊗ 𝐄3 , (3.60)

here we assume that 𝜆1 > 𝜆2 > 𝜆3, and hence 𝐍𝐂
max = 𝐄1. Note that

𝐼4 = 𝜆21
(

𝐍 ⋅ 𝐄1
)2 + 𝜆22

(

𝐍 ⋅ 𝐄2
)2 + 𝜆23

(

𝐍 ⋅ 𝐄3
)2 , 𝐼5 = 𝜆41

(

𝐍 ⋅ 𝐄1
)2 + 𝜆42

(

𝐍 ⋅ 𝐄2
)2 + 𝜆43

(

𝐍 ⋅ 𝐄3
)2 . (3.61)

uppose (𝐌 ⋅𝐍)𝐍−𝐌 = 𝟎, and hence, 𝐌 ⋅𝐍 = ±1. Thus, 𝐍 = ±𝐌. If 𝐍 is parallel to any of the principal directions of 𝐂, i.e., 𝐍 = 𝐄𝑖
or 𝑖 = 1, 2, 3, and 𝐌 = ±𝐍, the right-hand side of (3.57) vanishes, i.e., the principal directions of 𝐂 are equilibrium points for (3.57).
f 𝜆1 > 𝜆2 = 𝜆3, then

𝐂♭ = 𝜆21𝐄1 ⊗ 𝐄1 + 𝜆22
(

𝐈 − 𝐄1 ⊗ 𝐄1
)

. (3.62)

n this case, the right-hand side of (3.53) vanishes for 𝐍 = 𝐄1, and any 𝐍 ⟂ 𝐄1. For a general dissipation potential, this result holds
s long as 𝜙 does not have a linear term in 𝐍̇, i.e. if 𝜕𝜙

𝜕𝐍̇
|

|

|𝐍̇=𝟎
= 𝟎.

3.2.7. Remodeling equation for fiber reorientation: Two families of fibers
Next, let us consider an isotropic solid reinforced by two families of fibers that are not necessarily orthogonal, i.e., effectively a

monoclinic solid. The independent fields of the theory are 𝜑, 𝐍1, and 𝐍2. We assume the following quadratic dissipation potential

𝜙(𝑋,𝐅,𝐍1,𝐍2, 𝐍̇1, 𝐍̇,𝐆, 𝐠) =
1
2
𝐍̇1 ⋅ B1 ⋅ 𝐍̇1 +

1
2
𝐍̇2 ⋅ B2 ⋅ 𝐍̇2 + 𝐍̇1 ⋅ B3 ⋅ 𝐍̇2 , (3.63)

here B𝑖 are symmetric and isotropic functions of their arguments. This implies that

𝜙 = 1
2
𝐾1⟨𝐍̇1, 𝐍̇1⟩𝐆 + 1

2
𝐾2⟨𝐍̇2, 𝐍̇2⟩𝐆 +𝐾3⟨𝐍̇1, 𝐍̇2⟩𝐆 , (3.64)

here 𝐾𝑖 = 𝐾𝑖(𝐼1,… , 𝐼9), 𝑖 = 1, 2, 3. The rate of energy dissipation is
𝜕𝜙
𝜕𝐍̇1

⋅ 𝐍̇1 +
𝜕𝜙
𝜕𝐍̇2

⋅ 𝐍̇2 ≥ 0 . (3.65)

s 𝐍̇1 and 𝐍̇2 can vary independently, one concludes that
𝜕𝜙
𝜕𝐍̇1

⋅ 𝐍̇1 ≥ 0 ,
𝜕𝜙
𝜕𝐍̇2

⋅ 𝐍̇2 ≥ 0 . (3.66)

For the dissipation potential (3.63) this is written as
[

B1 B3
B3 B2

] [

𝐍̇1
𝐍̇2

]

⋅
[

𝐍̇1
𝐍̇2

]

≥ 0 . (3.67)

irst, note that B1 and B2 are positive-definite, and hence 𝐾1, 𝐾2 > 0. According to Schur’s complement condition (De Klerk, 2006),
ositive-definiteness of the block matrix is equivalent to positive-definiteness of either B2 − B3B

−1
1 B3 or B1 − B3B

−1
2 B3. This is

equivalent to 𝐾2 < 𝐾 𝐾 .
16
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Remodeling energy. The Lagrangian density is written as  =  − 𝑊 −
𝑟
𝑊 + 𝑞𝑛1

(

𝐍1 ⋅ 𝐍1 − 1
)

+ 𝑞𝑛2
(

𝐍2 ⋅ 𝐍2 − 1
)

, where
𝑟
𝑊 =

𝑟
𝑊 (𝑋,𝐂♭,𝐍1,𝐍2,𝐆) is the remodeling energy for the two fiber families, and 𝑞𝑛1 = 𝑞𝑛1(𝑋, 𝑡) and 𝑞𝑛2 = 𝑞𝑛2(𝑋, 𝑡) are the Lagrange
multiplier fields corresponding to the internal constraints 𝐍1 ⋅ 𝐍1 = 1 and 𝐍2 ⋅ 𝐍2 = 1.

The three independent variations are (𝛿𝜑, 𝛿𝐍1, 𝛿𝐍2). For 𝛿𝐍𝑗 variations, 𝛿 = −𝛿𝑊 + 2𝑞𝑛𝑗𝐍𝑗 ⋅ 𝛿𝐍𝑗 . Hence, (3.1) is simplified to
read

∫

𝑡2

𝑡1
∫

[

−𝑊4
𝜕𝐼4
𝜕𝐍1

−𝑊5
𝜕𝐼5
𝜕𝐍1

−𝑊8
𝜕𝐼8
𝜕𝐍1

−𝑊9
𝜕𝐼9
𝜕𝐍1

− 𝜕
𝑟
𝑊
𝜕𝐍1

+ 2𝑞𝑛1𝐍♭1 −
𝜕𝜙
𝜕𝐍̇1

]

∶ 𝛿𝐍1 𝑑𝑉 d𝑡 = 0 ,

∫

𝑡2

𝑡1
∫

[

−𝑊6
𝜕𝐼6
𝜕𝐍2

−𝑊7
𝜕𝐼7
𝜕𝐍2

−𝑊8
𝜕𝐼8
𝜕𝐍2

−𝑊9
𝜕𝐼9
𝜕𝐍2

− 𝜕
𝑟
𝑊
𝜕𝐍2

+ 2𝑞𝑛2𝐍♭2 −
𝜕𝜙
𝜕𝐍̇2

]

∶ 𝛿𝐍2 𝑑𝑉 d𝑡 = 0 .

(3.68)

sing the relations
𝜕𝐼4
𝜕𝐍1

= 2𝐂♭ ⋅ 𝐍1 ,
𝜕𝐼5
𝜕𝐍1

= 2𝐂2♯ ⋅ 𝐍1 ,
𝜕𝐼8
𝜕𝐍1

= 𝐼8 −1𝐍♭2 + 𝐂♭ ⋅ 𝐍2 ,
𝜕𝐼9
𝜕𝐍1

= 2 𝐍♭2 ,

𝜕𝐼6
𝜕𝐍2

= 2𝐂♭ ⋅ 𝐍2 ,
𝜕𝐼7
𝜕𝐍2

= 2𝐂2♭ ⋅ 𝐍2 ,
𝜕𝐼8
𝜕𝐍2

= 𝐼8 −1 𝐍♭1 + 𝐂♭ ⋅ 𝐍1 ,
𝜕𝐼9
𝜕𝐍2

= 2 𝐍♭1 ,
(3.69)

he remodeling equations are written as

𝐆♯ 𝜕𝜙
𝜕𝐍̇1

= 2𝑞𝑛1𝐍1 −
𝜕

𝑟
𝑊
𝜕𝐍1

− 2𝑊4 𝐂 ⋅ 𝐍1 − 2𝑊5 𝐂2 ⋅ 𝐍1 −𝑊8
(

𝐼8 −1 𝐍2 + 𝐂 ⋅ 𝐍2
)

− 2𝑊9 𝐍2 ,

𝐆♯ 𝜕𝜙
𝜕𝐍̇2

= 2𝑞𝑛2𝐍2 −
𝜕

𝑟
𝑊
𝜕𝐍2

− 2𝑊6 𝐂 ⋅ 𝐍2 − 2𝑊7 𝐂2 ⋅ 𝐍2 −𝑊8
(

𝐼8 −1 𝐍1 + 𝐂 ⋅ 𝐍1
)

− 2𝑊9 𝐍1 .
(3.70)

Eliminating 𝑞𝑛1 and 𝑞𝑛2 from the above equations, one obtains

𝐆♯ 𝜕𝜙
𝜕𝐍̇1

−
(

𝜕𝜙
𝜕𝐍̇1

⋅ 𝐍1

)

𝐍1 =

⟨

𝜕
𝑟
𝑊
𝜕𝐍1

,𝐍1

⟩

𝐍1 −
𝜕

𝑟
𝑊
𝜕𝐍1

+ 2𝑊4(𝐼4𝐍1 − 𝐂 ⋅ 𝐍1) + 2𝑊5(𝐼5𝐍1 − 𝐂2 ⋅ 𝐍1)

+𝑊8
(

2𝐼8 𝐍1 − 𝐼8 −1 𝐍2 − 𝐂 ⋅ 𝐍2
)

+ 2𝑊9( 𝐍1 − 𝐍2) ,

𝐆♯ 𝜕𝜙
𝜕𝐍̇2

−
(

𝜕𝜙
𝜕𝐍̇2

⋅ 𝐍2

)

𝐍2 =

⟨

𝜕
𝑟
𝑊
𝜕𝐍2

,𝐍2

⟩

𝐍2 −
𝜕

𝑟
𝑊
𝜕𝐍2

+ 2𝑊6(𝐼6𝐍2 − 𝐂 ⋅ 𝐍2) + 2𝑊7(𝐼7𝐍2 − 𝐂2 ⋅ 𝐍2)

+𝑊8
(

2𝐼8 𝐍2 − 𝐼8 −1 𝐍1 − 𝐂 ⋅ 𝐍1
)

+ 2𝑊9( 𝐍2 − 𝐍1) .

(3.71)

Let us assume the remodeling energy
𝑟
𝑊 (𝑋,𝐂♭,𝐍1,𝐍2,𝐆) = 1

2𝜅𝑀1 (𝐌 ⋅𝐍1)2 +
1
2𝜅𝑀2 (𝐌 ⋅𝐍2)2, where 𝜅𝑀1 and 𝜅𝑀2 are scalars, and

𝐌 is some unit vector that explicitly depends on 𝐂♭. Let us also assume the quadratic dissipation potential (3.63). The remodeling
equations are simplified to read

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝐾1
(

𝐍̇1 − 𝐍1 ⋅ 𝐍̇1 𝐍1
)

+𝐾3
(

𝐍̇2 − 𝐍1 ⋅ 𝐍̇2 𝐍1
)

= 𝜅𝑀1(𝐌 ⋅ 𝐍1)
[

(𝐌 ⋅ 𝐍1)𝐍1 −𝐌
]

+2𝑊4(𝐼4𝐍1 − 𝐂 ⋅ 𝐍1) + 2𝑊5(𝐼5𝐍1 − 𝐂2 ⋅ 𝐍1)

+𝑊8
(

2𝐼8 𝐍1 − 𝐼8 −1 𝐍2 − 𝐂 ⋅ 𝐍2
)

+ 2𝑊9( 𝐍1 − 𝐍2) ,

𝐾2
(

𝐍̇2 − 𝐍2 ⋅ 𝐍̇2 𝐍2
)

+𝐾3
(

𝐍̇1 − 𝐍2 ⋅ 𝐍̇1 𝐍2
)

= 𝜅𝑀2(𝐌 ⋅ 𝐍2)
[

(𝐌 ⋅ 𝐍2)𝐍2 −𝐌
]

+2𝑊6(𝐼6𝐍2 − 𝐂 ⋅ 𝐍2) + 2𝑊7(𝐼7𝐍2 − 𝐂2 ⋅ 𝐍2)

+𝑊8
(

2𝐼8 𝐍2 − 𝐼8 −1 𝐍1 − 𝐂 ⋅ 𝐍1
)

+ 2𝑊9( 𝐍2 − 𝐍1) .

(3.72)

imilarly, for the remodeling energy
𝑟
𝑊 (𝑋,𝐂♭,𝐍1,𝐍2,𝐆) = 𝜅𝑀1 |𝐌 ⋅ 𝐍1| + 𝜅𝑀2 |𝐌 ⋅ 𝐍2|, the remodeling equations read

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝐾1
(

𝐍̇1 − 𝐍1 ⋅ 𝐍̇1 𝐍1
)

+𝐾3
(

𝐍̇2 − 𝐍1 ⋅ 𝐍̇2 𝐍1
)

= 𝜅𝑀1 sgn(𝐌 ⋅ 𝐍1)
[

(𝐌 ⋅ 𝐍1)𝐍1 −𝐌
]

+2𝑊4(𝐼4𝐍1 − 𝐂 ⋅ 𝐍1) + 2𝑊5(𝐼5𝐍1 − 𝐂2 ⋅ 𝐍1)

+𝑊8
(

2𝐼8 𝐍1 − 𝐼8 −1 𝐍2 − 𝐂 ⋅ 𝐍2
)

+ 2𝑊9( 𝐍1 − 𝐍2) ,

𝐾2
(

𝐍̇2 − 𝐍2 ⋅ 𝐍̇2 𝐍2
)

+𝐾3
(

𝐍̇1 − 𝐍2 ⋅ 𝐍̇1 𝐍2
)

= 𝜅𝑀2 sgn(𝐌 ⋅ 𝐍2)
[

(𝐌 ⋅ 𝐍2)𝐍2 −𝐌
]

+2𝑊6(𝐼6𝐍2 − 𝐂 ⋅ 𝐍2) + 2𝑊7(𝐼7𝐍2 − 𝐂2 ⋅ 𝐍2)

+𝑊8
(

2𝐼8 𝐍2 − 𝐼8 −1 𝐍1 − 𝐂 ⋅ 𝐍1
)

+ 2𝑊9( 𝐍2 − 𝐍1) .

(3.73)

.3. The first law of thermodynamics

The first law of thermodynamics, or the balance of energy, reads

𝑑 (

𝑊 + 1𝜌𝑜⟨𝐕,𝐕⟩g
)

𝑑𝑉 = 𝜌𝑜
(

⟨𝐁,𝐕⟩𝐠 + 𝑅
)

𝑑𝑉 +
(

⟨𝐓,𝐕⟩𝐠 +𝐻
)

𝑑𝐴 , (3.74)
17

𝑑𝑡 ∫ 2 ∫ ∫𝜕
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where  ⊂  is an arbitrary sub-body, 𝑊 is the energy function or the internal energy density, 𝑅 = 𝑅(𝑋, 𝑡) is the heat supply per
unit mass, 𝐻 = −⟨𝐐, 𝐍̂⟩𝐆 is the heat flux, 𝐐 = 𝐐(𝑋, 𝑇 , 𝑑𝑇 ,𝐂,𝐆) is the external heat flux per unit area, 𝐍̂ is the 𝐆-unit normal to the
oundary 𝜕, and 𝑇 = 𝑇 (𝑋, 𝑡) is the absolute temperature field.

The local form of the balance of energy reads

𝑊̇ = 𝜌𝑜𝑅 + 𝐏∶∇𝐆𝐕 − Div𝐐 + ⟨Div𝐏 + 𝜌𝑜(𝐁 − 𝐀),𝐕⟩𝐠 . (3.75)

t this point, we do not know yet that the first Piola–Kirchhoff stress 𝐏 = 𝜕𝑊
𝜕𝐅 , which is a consequence of the second law of

thermodynamics. However, to simplify the calculations, we are going to assume this. It is straightforward to see that 𝐏∶∇𝐆𝐕 = 1
2𝐒∶

̇ ♭, where 𝐒 = 𝐅−1𝐏 is the second Piola–Kirchhoff stress. Thus, the local form of the energy balance reads

𝑊̇ = 𝜌𝑜𝑅 + 1
2
𝐒∶ 𝐂̇♭ − Div𝐐 . (3.76)

.4. The second law of thermodynamics

The second law of thermodynamics can be stated in the form of the material Clausius–Duhem inequality (Marsden and Hughes,
983) that is written as

𝑑
𝑑𝑡 ∫

𝑑𝑉 ≥ ∫
𝜌𝑜
𝑅
𝑇
𝑑𝑉 + ∫𝜕

𝐻
𝑇
𝑑𝐴 , (3.77)

where  = ̂ (𝑋, 𝑇 ,𝐂♭,𝐆) is the material entropy density (per unit undeformed volume). The local form of Clausius–Duhem
nequality reads

𝜂̇ = 𝑇 ̇ − 𝜌𝑜𝑅 + 𝑇 Div
(

𝐐
𝑇

)

≥ 0 , (3.78)

here 𝜂̇ is the rate of energy dissipation.
The free energy density is defined as 𝛹 = 𝑊 − 𝑇 , and hence, 𝛹 = 𝛹̂ (𝑋, 𝑇 ,𝐂♭,𝐆). Note that 𝑇 ̇ = 𝑊̇ − 𝛹̇ − 𝑇̇ , and thus

𝜂̇ = 𝑊̇ − 𝛹̇ − 𝑇̇ + Div𝐐 − 1
𝑇
⟨𝑑𝑇 ,𝐐⟩ − 𝜌𝑜𝑅 ≥ 0 . (3.79)

sing (3.78) in the above inequality, one obtains

𝜂̇ = 1
2
𝐒∶ 𝐂̇♭ − 𝛹̇ − 𝑇̇ − 1

𝑇
⟨𝑑𝑇 ,𝐐⟩ ≥ 0 . (3.80)

ut

𝛹̇ = 𝜕𝛹̂
𝜕𝑇

𝑇̇ + 𝜕𝛹̂
𝜕𝐂♭

∶ 𝐂̇♭ + 𝜕𝛹̂
𝜕𝐆

∶𝐆̇ = 𝜕𝛹̂
𝜕𝑇

𝑇̇ + 𝜕𝛹̂
𝜕𝐂♭

∶ 𝐂̇♭ + 2
𝑟
𝐅−⋆𝐆 𝜕𝛹

𝜕𝐆
∶
𝑟̇
𝐅 . (3.81)

s 0 =
̇

det
𝑟
𝐅 =

𝑟
𝐅−1 ∶

𝑟̇
𝐅, a term 𝑞

𝑟
𝐅−1 can be added to the last term without changing the equality, where 𝑞 is a Lagrange multiplier.

hus, (3.80) is simplified to read

𝜂̇ = −
(

 + 𝜕𝛹̂
𝜕𝑇

)

𝑇̇ + 1
2

(

𝐒 − 2 𝜕𝛹̂
𝜕𝐂♭

)

∶ 𝐂̇♭ − 1
𝑇
⟨𝑑𝑇 ,𝐐⟩ +

(

−2
𝑟
𝐅−⋆𝐆 𝜕𝛹

𝜕𝐆
+ 𝑞

𝑟
𝐅−1

)

∶
𝑟̇
𝐅 ≥ 0 . (3.82)

he above inequality must hold for arbitrary 𝑇̇ , and 𝐂̇♭, and hence

 = − 𝜕𝛹̂
𝜕𝑇

, 𝐒 = 2 𝜕𝛹̂
𝜕𝐂♭

, 𝜂̇ = − 1
𝑇
⟨𝑑𝑇 ,𝐐⟩ +

(

−2
𝑟
𝐅−⋆𝐆 𝜕𝛹

𝜕𝐆
+ 𝑞

𝑟
𝐅−1

)

∶
𝑟̇
𝐅 ≥ 0 . (3.83)

ote that

𝜕𝑊
𝜕𝐆

= 𝜕𝑊
𝜕𝐆

|

|

|

|

| ,𝐂♭
=
[ 𝜕𝛹
𝜕𝐆

+ 𝜕𝛹
𝜕𝑇

𝜕𝑇
𝜕𝐆

]

+ 𝜕𝑇
𝜕𝐆

 = 𝜕𝛹
𝜕𝐆

, (3.84)

here use was made of (3.83)1. Using the above relation and the remodeling equation (3.18) in (3.83)3, we obtain18

𝜂̇ = − 1
𝑇
⟨𝑑𝑇 ,𝐐⟩ +

𝜕𝜙

𝜕
𝑟̇
𝐅
∶
𝑟̇
𝐅 ≥ 0 . (3.85)

If an isothermal process is assumed, i.e., 𝑑𝑇 = 0, the entropy production is simplified to read

𝜂̇ =
𝜕𝜙

𝜕
𝑟̇
𝐅
∶
𝑟̇
𝐅 ≥ 0 . (3.86)

18 It is straightforward to show that this inequality has the same form for anisotropic solids.
18
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4. Examples of material remodeling

In this section, we discuss three concrete examples of material remodeling. Let us consider an incompressible isotropic solid that
s reinforced by a family of fibers. At a material point 𝑋 ∈  in the initial body, the unit tangent to the fiber is denoted by 𝐍̊(𝑋).
his material is effectively transversely isotropic, and at 𝑋 ∈ , the plane of isotropy is normal to 𝐍̊(𝑋). The body undergoes a
emodeling process during deformation such that the material’s preferred direction evolves. Let us denote the time-dependent unit
angent to the fiber by 𝐍(𝑋, 𝑡), which models the reorientation of fibers. A remodeling tensor relates 𝐍(𝑋, 𝑡) to 𝐍̊(𝑋) = 𝐍(𝑋, 0),
.e., 𝐍(𝑋, 𝑡) =

𝑟
𝐅−1(𝑋, 𝑡)𝐍̊(𝑋), where

𝑟
𝐅(𝑋, 𝑡) ∈ 𝑆𝑂(3)(𝑇𝑋, 𝐆̊)—the set of rotations. This means that 𝐆 =

𝑟
𝐅∗𝐆̊ =

𝑟
𝐅⋆𝐆̊

𝑟
𝐅 = 𝐆̊, i.e., the

aterial metric is flat.
The three examples that are studied in this section are subsets of Family 3 universal deformations. A universal deformation is one

hat can be maintained in the absence of body forces for any member of a given class of materials (Ericksen, 1954, 1955). Ericksen
1955) showed that for homogeneous compressible isotropic solids, the only universal deformations are homogeneous deformations
and all homogeneous deformations are universal). Recently, Yavari (2021b) showed that inhomogeneous compressible isotropic
olids do not admit universal deformations. For incompressible solids the problem of characterizing universal deformations is much
ore difficult and interesting (Saccomandi, 2001; Tadmor et al., 2012; Goriely, 2017). For homogeneous incompressible isotropic

olids, Ericksen (1954) found four families of universal deformations (other than volume-preserving homogeneous deformations).
ater on, a fifth family was discovered independently by Singh and Pipkin (1965) and Klingbeil and Shield (1966). This last family is
eculiar in the sense that it is inhomogeneous while its principal invariants are constant. Determining all universal deformations with
onstant principal invariants is still an open problem. Recently, Ericksen’s problem was revisited for inhomogeneous and anisotropic
olids (Yavari, 2021a; Yavari and Goriely, 2021, 2022b).19 The three problems that we investigate in this section admit universal
eformations for certain universal material preferred directions as was shown in (Yavari and Goriely, 2021, 2022b).

.1. Example 1: Finite extension of a transversely isotropic circular cylindrical bar

Consider a solid cylinder with initial radius 𝑅0 and length 𝐿. Assume that for fixed 𝑅 ∈ (0, 𝑅0] fibers are along a family of
elices. Recall that in cylindrical coordinates (𝑅,𝛩,𝑍) and (𝑟, 𝜃, 𝑧), the initial material metric and the metric of the ambient space
ave the following representations

𝐆̊ =
⎡

⎢

⎢

⎣

1 0 0
0 𝑅2 0
0 0 1

⎤

⎥

⎥

⎦

, 𝐠 =
⎡

⎢

⎢

⎣

1 0 0
0 𝑟2 0
0 0 1

⎤

⎥

⎥

⎦

. (4.1)

or this body 𝐍̊ = 𝐍̊(𝑅,𝛩). Tangent to a helix in cylindrical coordinates has a vanishing radial coordinate. Also, 𝑁̊𝐴𝑁̊𝐵𝐺̊𝐴𝐵 =
2(𝑁̊𝛩)2 + (𝑁̊𝑍 )2 = 1. For example, fibers along 𝑍 (parallel to the axis of the bar) correspond to 𝑁̊𝛩 = 0 and 𝑁̊𝑍 = 1, while for a

amily of circular fibers 𝑁̊𝛩 = 1
𝑅 and 𝑁̊𝑍 = 0. If 𝛾(𝑅) is the angle that 𝐍̊(𝑅,𝛩) makes with 𝐄𝛩(𝛩) =

𝜕
𝜕𝛩 , then

𝐍̊(𝑅,𝛩) = cos 𝛾(𝑅)
𝑅

𝐄𝛩(𝛩) + sin 𝛾(𝑅)𝐄𝑍 , (4.2)

here 𝐄𝑍 = 𝜕
𝜕𝑍 . Assume that in a remodeling process, this family of helices is transformed into another family of helices. At a given

oint with coordinates (𝑅,𝛩,𝑍) this corresponds to rotating 𝐍̊ along the 𝐄𝑅 = 𝜕
𝜕𝑅 axis. Thus, we have the following representation

for
𝑟
𝐅:20

𝑟
𝐅(𝑅, 𝑡) =

⎡

⎢

⎢

⎣

1 0 0
0 cos 𝛼(𝑅, 𝑡) − 1

𝑅 sin 𝛼(𝑅, 𝑡)
0 𝑅 sin 𝛼(𝑅, 𝑡) cos 𝛼(𝑅, 𝑡)

⎤

⎥

⎥

⎦

, (4.4)

where 𝛼(𝑅, 𝑡) is the angle of rotation. Thus

𝐍(𝑅, 𝑡) =
⎡

⎢

⎢

⎣

0
cos(𝛾(𝑅)−𝛼(𝑅,𝑡))

𝑅
sin(𝛾(𝑅) − 𝛼(𝑅, 𝑡))

⎤

⎥

⎥

⎦

. (4.5)

e will write the remodeling equation directly in terms of 𝐍̇(𝑅, 𝑡), and not
𝑟̇
𝐅(𝑅, 𝑡). The initial condition is 𝛼(𝑅, 0) = 0.

19 Universal displacements are the analogues of universal deformations in linear elasticity (Truesdell, 1966; Gurtin, 1972; Yavari et al., 2020; Yavari and
oriely, 2022b,a; Yavari, 2023).
20 Note that

𝑟

𝐅 is written such that its physical components are dimensionless, i.e.,

𝑟̂

𝐅(𝑅, 𝑡) =
⎡

⎢

⎢

⎣

1 0 0
0 cos 𝛼(𝑅, 𝑡) − sin 𝛼(𝑅, 𝑡)
0 sin 𝛼(𝑅, 𝑡) cos 𝛼(𝑅, 𝑡)

⎤

⎥

⎥

⎦

. (4.3)

ecall that the physical and curvilinear components are related as
𝑟̂

𝐅
𝐴

=
√

𝐺
√

𝐺𝐵𝐵
𝑟

𝐅𝐴 (no summation) (Truesdell, 1953).
19

𝐵 𝐴𝐴 𝐵
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Let us consider radial deformations and assume the following kinematics ansatz

𝑟 = 𝑟(𝑅, 𝑡) , 𝜃 = 𝛩 , 𝑧 = 𝜆(𝑡)𝑍 , (4.6)

here 𝜆(𝑡) is the axial stretch.21 In a force-control loading, 𝜆(𝑡) is an unknown function to be determined, while in a displacement-
ontrol loading, 𝜆(𝑡) is given. Let us assume that loading is slow enough so that the inertial effects can be neglected. The deformation
radient reads

𝐅 = 𝐅(𝑅, 𝑡) =
⎡

⎢

⎢

⎣

𝑟,𝑅(𝑅, 𝑡) 0 0
0 1 0
0 0 𝜆(𝑡)

⎤

⎥

⎥

⎦

. (4.7)

ncompressibility implies that 𝑟(𝑅, 𝑡) = 𝑅
√

𝜆(𝑡)
. The principal invariants read

𝐼1 = 𝜆2(𝑡) + 2𝜆−1(𝑡) ,

𝐼2 = 2𝜆(𝑡) + 𝜆−2(𝑡) ,

𝐼4 = 𝜆2(𝑡) sin2(𝛼(𝑅, 𝑡) − 𝛾(𝑅)) + 𝜆−1(𝑡) cos2(𝛼(𝑅, 𝑡) − 𝛾(𝑅)) ,

𝐼5 = 𝜆4(𝑡) sin2(𝛼(𝑅, 𝑡) − 𝛾(𝑅)) + 𝜆−2(𝑡) cos2(𝛼(𝑅, 𝑡) − 𝛾(𝑅)) .

(4.8)

tress and equilibrium equations. The non-zero components of the Cauchy stress are:

𝜎𝑟𝑟(𝑅, 𝑡) = −𝑝(𝑅, 𝑡) + 2𝜆−1(𝑡)𝑊1 − 2𝜆(𝑡)𝑊2 ,

𝜎𝜃𝜃(𝑅, 𝑡) = −
𝑝(𝑅, 𝑡)𝜆(𝑡)

𝑅2
+

2𝑊1

𝑅2
−

2𝜆2(𝑡)𝑊2

𝑅2
+

2
[

𝜆(𝑡)𝑊4 + 2𝑊5
]

𝑅2𝜆(𝑡)
cos2(𝛼(𝑅, 𝑡) − 𝛾(𝑅)) ,

𝜎𝑧𝑧(𝑅, 𝑡) = −𝑝(𝑅, 𝑡) + 2𝜆2(𝑡)𝑊1 − 2𝜆−2(𝑡)𝑊2 + 2𝜆2(𝑡)
[

𝑊4 + 2𝜆2(𝑡)𝑊5
]

sin2(𝛼(𝑅, 𝑡) − 𝛾(𝑅)) ,

𝜎𝜃𝑧(𝑅, 𝑡) = −
𝜆(𝑡)𝑊4 +

[

1 + 𝜆3(𝑡)
]

𝑊5

𝑅
sin [2(𝛼(𝑅, 𝑡) − 𝛾(𝑅))] .

(4.9)

The only nontrivial equilibrium equation is 𝜎𝑟𝑟,𝑟 +
1
𝑟 𝜎

𝑟𝑟 − 𝑟𝜎𝜃𝜃 = 0. In terms of the referential coordinates, this reads

𝜕
𝜕𝑅

𝜎𝑟𝑟(𝑅, 𝑡) =
2
[

𝜆(𝑡)𝑊4 + 2𝑊5
]

𝑅𝜆2(𝑡)
cos2(𝛼(𝑅, 𝑡) − 𝛾(𝑅)) . (4.10)

We assume the boundary condition 𝜎𝑟𝑟(𝑅0, 𝑡) = 0. Thus

𝜎𝑟𝑟(𝑅, 𝑡) = − 2
𝜆2(𝑡) ∫

𝑅0

𝑅

𝜆(𝑡)𝑊4 + 2𝑊5
𝜉

cos2(𝛼(𝜉, 𝑡) − 𝛾(𝜉)) 𝑑𝜉 . (4.11)

his, in particular, implies that

−𝑝(𝑅, 𝑡) = − 2
𝜆2(𝑡) ∫

𝑅0

𝑅

𝜆(𝑡)𝑊4 + 2𝑊5
𝜉

cos2(𝛼(𝜉, 𝑡) − 𝛾(𝜉)) 𝑑𝜉 − 2𝜆−1(𝑡)𝑊1 + 2𝜆(𝑡)𝑊2 . (4.12)

ow the physical components of the other three stresses are simplified to read22

𝜎̂𝜃𝜃(𝑅, 𝑡) =
2
[

𝜆(𝑡)𝑊4 + 2𝑊5
]

𝜆2(𝑡)
cos2(𝛼(𝑅, 𝑡) − 𝛾(𝑅)) − 2

𝜆2(𝑡) ∫

𝑅0

𝑅

𝜆(𝑡)𝑊4 + 2𝑊5
𝜉

cos2(𝛼(𝜉, 𝑡) − 𝛾(𝜉)) 𝑑𝜉 ,

𝜎̂𝑧𝑧(𝑅, 𝑡) = 2
[

𝜆2(𝑡) − 𝜆−1(𝑡)
]

𝑊1 + 2
[

𝜆(𝑡) − 𝜆−2(𝑡)
]

𝑊2 + 2𝜆2(𝑡)
[

𝑊4 + 2𝜆2(𝑡)𝑊5
]

sin2(𝛼(𝑅, 𝑡) − 𝛾(𝑅))

− 2
𝜆2(𝑡) ∫

𝑅0

𝑅

𝜆(𝑡)𝑊4 + 2𝑊5
𝜉

cos2(𝛼(𝜉, 𝑡) − 𝛾(𝜉)) 𝑑𝜉 ,

𝜎̂𝜃𝑧(𝑅, 𝑡) = −
𝜆(𝑡)𝑊4 +

[

1 + 𝜆3(𝑡)
]

𝑊5

𝜆
1
2 (𝑡)

sin [2(𝛼(𝑅, 𝑡) − 𝛾(𝑅))] .

(4.13)

The axial force. For displacement-control loading, 𝜆(𝑡) is a given function, and the only unknown of the problem is 𝛼(𝑅, 𝑡), which
is governed by the remodeling equation. For force-control loadings, the unknowns of the problem are 𝜆(𝑡) and 𝛼(𝑅, 𝑡). In this case,
at the two ends of the bar (𝑍 = 0, 𝐿), the axial force required to maintain the deformation is

𝐹 (𝑡) = 2𝜋 ∫

𝑅0

0
𝑃 𝑧𝑍 (𝑅, 𝑡)𝑅𝑑𝑅 , (4.14)

21 It should be noted that (4.6) is a subset of Family 3 universal deformations (Ericksen, 1954), and the fiber distribution (4.5) are universal material preferred
irections (Yavari and Goriely, 2021). This means that the deformations (4.6) can be maintained in the absence of body forces for any incompressible isotropic
olid cylinder reinforced by fibers with distribution given in (4.5).
22 𝑟𝑟 𝑟𝑟 𝜃𝜃 2 𝜃𝜃 𝜃 𝜃𝜃 𝑧𝑧 𝑧𝑧
20

Note that 𝜎̂ = 𝜎 , 𝜎̂ = 𝑟 𝜎 , 𝜎̂ = 𝑟𝜎 , and 𝜎̂ = 𝜎 .
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where 𝑃 𝑧𝑍 (𝑅, 𝑡) = 𝜆−1(𝑡) 𝜎𝑧𝑧(𝑅, 𝑡) is the 𝑧𝑍-component of the first Piola–Kirchhoff stress. This is simplified to read

− 2𝜆−3(𝑡)∫

𝑅0

0
𝑅∫

𝑅0

𝑅

𝜆(𝑡)𝑊4 + 2𝑊5
𝜉

cos2(𝛼(𝜉, 𝑡) − 𝛾(𝜉)) 𝑑𝜉 𝑑𝑅

+ 2
[

𝜆(𝑡) − 𝜆−2(𝑡)
]

∫

𝑅0

0
𝑊1 𝑅𝑑𝑅 + 2

[

1 − 𝜆−3(𝑡)
]

∫

𝑅0

0
𝑊2 𝑅𝑑𝑅

+ 2𝜆(𝑡)∫

𝑅0

0
𝑅
[

𝑊4 + 2𝜆2(𝑡)𝑊5
]

sin2(𝛼(𝑅, 𝑡) − 𝛾(𝑅)) 𝑑𝑅 =
𝐹 (𝑡)
2𝜋

.

(4.15)

t is assumed that 𝐹 (0) = 0, and hence 𝜆(0) = 1. We will consider both displacement-control and force-control cases.

he remodeling equation. The remodeling equation (3.55) is used.23 For this problem, it is written as

sin(𝛼(𝑅, 𝑡) − 𝛾(𝑅))
{

(

𝜆3(𝑡) − 1
) [

𝜆(𝑡)𝑊4 + (1 + 𝜆3(𝑡))𝑊5
]

sin(2(𝛾(𝑅) − 𝛼(𝑅, 𝑡))) −𝐾𝜆2(𝑡) 𝛼̇(𝑅, 𝑡)
}

= 0 ,

cos(𝛼(𝑅, 𝑡) − 𝛾(𝑅))
{

(

𝜆3(𝑡) − 1
) [

𝜆(𝑡)𝑊4 + (1 + 𝜆3(𝑡))𝑊5
]

sin(2(𝛾(𝑅) − 𝛼(𝑅, 𝑡))) −𝐾𝜆2(𝑡) 𝛼̇(𝑅, 𝑡)
}

= 0 .
(4.16)

nowing that the sine and cosine functions cannot vanish simultaneously, the remodeling equation reads

𝐾 𝛼̇(𝑅, 𝑡) =
(

𝜆−2(𝑡) − 𝜆(𝑡)
) [

𝜆(𝑡)𝑊4 + (1 + 𝜆3(𝑡))𝑊5
]

sin(2(𝛼(𝑅, 𝑡) − 𝛾(𝑅))) . (4.17)

hoosing 𝐌 = 𝐍𝐂
max = 𝐄𝑍 , the remodeling equation (3.58) is simplified to read:

𝐾 𝛼̇ =
{

−1
2
𝜅𝑀 + (𝜆−2 − 𝜆)

[

𝜆𝑊4 +
(

𝜆3 + 1
)

𝑊5
]

}

sin 2(𝛼 − 𝛾) . (4.18)

imilarly, the remodeling equation (3.59) is simplified to read:

𝐾 𝛼̇ = 𝜅𝑀 sgn [sin(𝛾 − 𝛼)] cos(𝛼 − 𝛾) + (𝜆−2 − 𝜆)
[

𝜆𝑊4 +
(

𝜆3 + 1
)

𝑊5
]

sin 2(𝛼 − 𝛾) . (4.19)

For our numerical examples, we consider an incompressible Mooney–Rivlin reinforced model (𝐼4 and 𝐼5 reinforcements) for
which (Triantafyllidis and Abeyaratne, 1983; Merodio and Ogden, 2003, 2005)

𝑊 (𝐼1, 𝐼2, 𝐼4, 𝐼5) = 𝐶1(𝐼1 − 3) + 𝐶2(𝐼2 − 3) +
𝜇1
2
(𝐼4 − 1)2 +

𝜇2
2
(𝐼5 − 1)2 , (4.20)

here 𝐶1, 𝐶2, 𝜇1, and 𝜇2 are positive constants. Thus, 𝑊1 = 𝐶1, 𝑊2 = 𝐶2, 𝑊4 = 𝜇1(𝐼4 − 1), and 𝑊5 = 𝜇1(𝐼5 − 1). For this material,
he remodeling equation (4.18) is simplified as

𝛼̇ =
𝜅𝑀
𝐾

cos(𝛾 − 𝛼) − 1
2𝜆8

{

𝜏−11 𝜆4
[

(

𝜆6 − 1
)2 cos 2(𝛾 − 𝛼) − 𝜆12 + 2𝜆8 − 2𝜆2 + 1

]

+ 𝜏−12

[

(

𝜆12 − 1
)2 cos 2(𝛾 − 𝛼) − 𝜆24 + 2𝜆16 − 2𝜆4 + 1

]

}

sin 2(𝛾 − 𝛼) ,

(4.21)

where 𝜏1 = 𝐾∕𝜇1, and 𝜏2 = 𝐾∕𝜇2 are relaxation times of this material. Similarly, the kinetic equation (4.19) is simplified to read

𝛼̇ =
𝜅𝑀
𝐾

sgn[sin(𝛾 − 𝛼)] cos(𝛾 − 𝛼) +
(

𝜆−1 − 𝜆−4
)

[

𝜏−11 𝜆2
(

𝜆3 sin2(𝛾 − 𝛼) + cos2(𝛾 − 𝛼) − 𝜆
)

+ 𝜏−12
(

𝜆3 + 1
) (

𝜆6 sin2(𝛾 − 𝛼) + cos2(𝛾 − 𝛼) − 𝜆2
)

]

sin 2(𝛾 − 𝛼) .
(4.22)

Displacement-control loading. Let us first consider displacement-control loading. It is assumed that 𝜆(𝑡) = 1 + (𝜆0 − 1) erf
( 𝑡
𝑡0

)

, where
erf is the error function and 𝑡0 is some characteristic time. Thus, 𝜆(0) = 1, and for 𝑡 > 𝑡0, 𝜆(𝑡) ≈ 𝜆0. In summary, the following
initial-value problem needs to be solved:24

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝛼̇ =
𝜅𝑀
𝐾

cos(𝛾 − 𝛼) − 1
2𝜆8

{

𝜏−11 𝜆4
[

(

𝜆6 − 1
)2 cos 2(𝛾 − 𝛼) − 𝜆12 + 2𝜆8 − 2𝜆2 + 1

]

+𝜏−12

[

(

𝜆12 − 1
)2 cos 2(𝛾 − 𝛼) − 𝜆24 + 2𝜆16 − 2𝜆4 + 1

]

}

sin 2(𝛾 − 𝛼) ,

𝛼(𝑅, 0) = 0 .

(4.23)

23 Epstein and Elzanowski (2007) considered a similar problem with a transversely isotropic body undergoing an 𝑆𝑂(3)-remodeling and assumed a particular
emodeling equation of the form (in our notation)

𝑟̇

𝐅
𝑟

𝐅−1 = −𝑘𝐄𝖠, where 𝑘 is a material constant, 𝐄 = 𝑊𝐆♯−𝐅𝖳𝐏 is the Eshelby stress, and 𝐄𝖠 is its anti-symmetric
art. Their choice of remodeling equation implied that fibers realign to reduce the shear deformations in the body.
24
21

Our numerical results show that the two kinetic equations will give very similar results, and we choose to work with (4.21).
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Force-control loading. Next, it is assumed that the axial force 𝐹 (𝑡) is given while both 𝜆(𝑡) and 𝛼(𝑅, 𝑡) are unknowns to be determined.
or the reinforced Mooney–Rivlin material (4.15) is simplified as

[

𝜆(𝑡) − 𝜆−2(𝑡)
]

𝐶1 +
[

1 − 𝜆−3(𝑡)
]

𝐶2 +
2𝜆(𝑡)
𝑅2
0

∫

𝑅0

0
𝑅
[

𝑊4 + 2𝜆2(𝑡)𝑊5
]

sin2 [𝛼(𝑅, 𝑡) − 𝛾(𝑅)] 𝑑𝑅

− 2
𝜆3(𝑡)𝑅2

0
∫

𝑅0

0
𝑅∫

𝑅0

𝑅

𝜆(𝑡)𝑊4 + 2𝑊5
𝜉

cos2 [𝛼(𝜉, 𝑡) − 𝛾(𝜉)] 𝑑𝜉 𝑑𝑅 =
𝐹 (𝑡)
2𝜋𝑅2

0

.
(4.24)

n summary, the following initial-value problem needs to be solved:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[

𝜆(𝑡) − 𝜆−2(𝑡)
]

𝐶1 +
[

1 − 𝜆−3(𝑡)
]

𝐶2 +
2𝜆(𝑡)
𝑅2
0

∫

𝑅0

0

[

𝑊4 + 2𝜆2(𝑡)𝑊5
]

sin2 [𝛼(𝑅, 𝑡) − 𝛾(𝑅)] 𝑑𝑅

− 2
𝜆3(𝑡)𝑅2

0
∫

𝑅0

0 ∫

𝑅0

𝑅

𝜆(𝑡)𝑊4 + 2𝑊5
𝜉

cos2 [𝛼(𝜉, 𝑡) − 𝛾(𝜉)] 𝑑𝜉 𝑑𝑅 =
𝐹 (𝑡)
2𝜋𝑅2

0

,

𝛼̇ =
𝜅𝑀
𝐾

cos(𝛾 − 𝛼) − 1
2𝜆8

{

𝜏−11 𝜆4
[

(

𝜆6 − 1
)2 cos 2(𝛾 − 𝛼) − 𝜆12 + 2𝜆8 − 2𝜆2 + 1

]

+𝜏−12

[

(

𝜆12 − 1
)2 cos 2(𝛾 − 𝛼) − 𝜆24 + 2𝜆16 − 2𝜆4 + 1

]

}

sin 2(𝛾 − 𝛼) ,

𝜆(0) = 1 , 𝛼(𝑅, 0) = 0 .

(4.25)

umerical results. We first consider a displacement-control loading. The material constants in the Mooney–Rivlin model are taken
o be 𝐶1 = 0.01, 𝐶2 = 0, 𝜇1 = 1, and 𝜇2 = 0. The relaxation times for the material are chosen to be 𝜏1 = 0.001, and 𝜏2 = 0.0. For
ll 𝑅 ∈ (0, 𝑅0], fibers are assumed to have the same helix angle, that is, 𝛾(𝑅) = 𝛾0. Furthermore, it is assumed that the preferred
rientation for fibers is in the direction of maximum principal strain, namely, 𝐌 = 𝐍𝐂

max = 𝐄𝑍 . Then, the parameters 𝛾0, 𝜅𝑀 , and 𝜆0
are varied to investigate their effects on the fiber remodeling. Fig. 2 shows the results for the applied loading 𝜆(𝑡) = 1+(𝜆0−1) erf

( 𝑡
𝑡0

)

with 𝑡0 = 1. The orientation of remodeled fibers is plotted in terms of the helix angle 𝛾0 − 𝛼(𝑡) for a wide range of values for 𝛾0, 𝜅𝑀 ,
nd 𝜆0. Seven values of initial fiber orientation are chosen from 0 to 𝜋∕2 in equal increments of 𝜋∕12. Recall that 𝛼(0) = 0. Three

values of the parameter 𝜅𝑀 = 0,−2𝐾, and −103𝐾 are studied in parts (a), (b), and (c) of the figure, respectively. Furthermore, for
ach value of 𝜅𝑀 , three values of maximum applied stretch 𝜆0 = 1.01, 1.1, and 2 are studied.

The first observation which can be made from Fig. 2 is that the final remodeled fiber orientation is independent of the initial fiber
rientation angle 𝛾0 in the range 0 < 𝛾0 < 𝜋∕2. However, the remodeling process is not monotonic in time, as evident for −𝜅𝑀∕𝐾 = 2
nd 𝜆0 = 1.1. The orientation angles 𝛾0 = 0, 𝜋∕2 are found to be equilibrium helix angles as expected, and fibers oriented in those
irections do not remodel. Now, when 𝜅𝑀 = 0, the fibers should remodel to minimize the energy function 𝑊 and align further
way from the angle 𝜋∕2. This is observed in Fig. 2(a), where the final fiber orientation decreases from 𝜋∕5 to 𝜋∕8 as the maximum

stretch increases from 1 to 2. On the other hand, when −𝜅𝑀 ≫ 𝐾, the fibers should remodel along 𝐄𝑍 . This is seen in Fig. 2(c),
where the orientation angle evolves to 𝜋∕2 for all values of 𝜆0. This case corresponds to the classical remodeling equation studied
by Menzel (2005) and others. When −𝜅𝑀 ∼ 𝐾, there should exist a competition between strain energy and remodeling energy.
Fig. 2(b) shows that for small values of the maximum stretch, fibers orient themselves along 𝐄𝑍 , while for larger values of stretch,
they orient themselves along a direction according to the strain energy minimization. A visual representation of the final orientation
of fibers as a function of 𝜆0 is shown in Fig. 3. More insight into this case is also provided by the evolution of stress components
(4.11), (4.13) shown in Fig. 4 for 𝑅∕𝑅0 = 0.5. For small and large values of maximum stretch, all stress components except 𝜎̂𝑧𝑧
are seen to evolve to zero, presumably due to remodeling energy and strain energy dominating in respective cases. However, for
intermediate stretch values, the stress components can evolve to a non-zero value, indicating a strong competition between the two
energies.

We next consider a force-control loading. Applying an axial force 𝐹 (𝑡) = 1+(𝐹0−1) erf
( 𝑡
𝑡0

)

with 𝐹0 = 0.1 and 𝑡0 = 1, we examine
he evolution of 𝛾0−𝛼(𝑡) and 𝜆(𝑡) for −𝜅𝑀∕𝐾 = 2 and two values of fiber-to-matrix modulus ratios, namely, 𝜇1∕𝐶1 = 20, 5. The results

are shown in Fig. 5. We observe that for 𝜇1∕𝐶1 = 20, the final fiber orientation is not independent of the initial fiber orientation.
While for some initial orientations, the fibers align along 𝐄𝑍 according to remodeling energy, for others, they align according to
the strain energy. For 𝜇1∕𝐶1 = 5, the effect of remodeling energy is stronger, and fibers for all initial orientations (except 0) align
along 𝐄𝑍 .

Lastly, to investigate how the fiber-remodeling affects the maximum stretch during cycles of loading–unloading, we consider the
following axial force loading with one cycle of loading–unloading followed by a second loading:

𝐹 (𝑡) =

⎧

⎪

⎨

⎪

⎩

𝐹0𝑡 , if 0 < 𝑡 ≤ 1 ,
𝐹0 − 𝐹0(𝑡 − 1) , if 1 < 𝑡 ≤ 2 ,
𝐹0(𝑡 − 2) , if 2 < 𝑡 ≤ 3 ,

(4.26)

with 𝐹0 = 0.2. Fig. 6 shows the results for remodeled fiber orientation, stretch, and stress components for 𝛾0 = 𝜋∕6, 𝜋∕4, and 𝜋∕3.
e make two key observations. First, at 𝑡∕𝜏1 = 2 × 103, when 𝐹 (𝑡) = 0 after one cycle of loading and unloading, 𝜆(𝑡 = 2 × 103) = 1,

nd all the stress components are zero. Thus, as expected (see Remark 3.3), there are no residual stresses observed. Second, the
22
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Fig. 2. Finite extension of a transversely isotropic cylindrical bar under displacement-control loading. The remodeled fiber orientation 𝛾0 − 𝛼(𝑡) is plotted as a
function of 𝑡∕𝜏1, where 𝜏1 is the material’s relaxation time. Seven initial fiber orientations, 𝛾0 − 𝛼(0) = 𝛾0 (corresponding to different colors), are investigated in
equal increments of 𝜋∕12 ranging from 0 to 𝜋∕2. (a) corresponds to −𝜅𝑀∕𝐾 = 0, (b) to −𝜅𝑀∕𝐾 = 2, and (c) to −𝜅𝑀∕𝐾 = 103. For each case, the displacement
function 𝜆(𝑡) = 1 + (𝜆0 − 1) erf

( 𝑡
𝑡0

)

is applied with three different values of the maximum stretch 𝜆0 = 1.01, 1.1, and 2.

remodeled fiber orientation for 𝛾0 = 𝜋∕3 at the end of second loading phase, 𝑡∕𝜏1 = 3 × 103, is different from that at the end of first
loading phase, 𝑡∕𝜏1 = 1× 103, while for the other two values of 𝛾0, it remains the same. This shows that the remodeling process can
be loading history-dependent.

4.2. Example 2: Finite extension of a monoclinic circular cylindrical bar

Let us consider the circular cylindrical bar of the previous example, however, with two families of helical fibers. For this
monoclinic solid cylinder, we have two unit vector fields 𝐍̊1 = 𝐍̊1(𝑅,𝛩), and 𝐍̊2 = 𝐍̊2(𝑅,𝛩). Suppose 𝛾1(𝑅) and 𝛾2(𝑅) are the
angles that 𝐍̊1(𝑅,𝛩) and 𝐍̊2(𝑅,𝛩) make with 𝐄𝛩, i.e.,

𝐍̊ (𝑅,𝛩) =
cos 𝛾1(𝑅) 𝐄 (𝛩) + sin 𝛾 (𝑅)𝐄 , 𝐍̊ (𝑅,𝛩) =

cos 𝛾2(𝑅) 𝐄 (𝛩) + sin 𝛾 (𝑅)𝐄 . (4.27)
23
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Fig. 3. Remodeled fiber orientation for a transversely isotropic bar under finite extension with −𝜅𝑀∕𝐾 = 2 shown in the reference configuration. For 𝜆0 = 1.01,
fibers align along the direction of loading. For 𝜆0 = 1.1 and 2, they align at an angle of 𝜋∕5 and 𝜋∕8, respectively.

Fig. 4. Evolution of stress components (4.11), (4.13) with time at 𝑅∕𝑅0 = 0.5 in a transversely isotropic bar under finite extension with −𝜅𝑀∕𝐾 = 2 and three
values of maximum stretch 𝜆0 = 1.1 and 2.

During a remodeling process, these vectors are transformed into the following two vectors

𝐍1(𝑅, 𝑡) =

⎡

⎢

⎢

⎢

⎣

0
cos(𝛾1(𝑅)−𝛼1(𝑅,𝑡))

𝑅
sin(𝛾1(𝑅) − 𝛼1(𝑅, 𝑡))

⎤

⎥

⎥

⎥

⎦

, 𝐍2(𝑅, 𝑡) =

⎡

⎢

⎢

⎢

⎣

0
cos(𝛾2(𝑅)−𝛼2(𝑅,𝑡))

𝑅
sin(𝛾2(𝑅) − 𝛼2(𝑅, 𝑡))

⎤

⎥

⎥

⎥

⎦

, (4.28)

where 𝛼1(𝑅, 𝑡) and 𝛼2(𝑅, 𝑡) are the angles of rotation to be determined. We assume the kinematics ansatz (4.6),25 and hence the
deformation gradient is given in (4.7). From incompressibility 𝑟(𝑅, 𝑡) = 𝑅

√

𝜆(𝑡)
, and the nine monoclinic invariants read

𝐼1 = 𝜆2 + 2𝜆−1 ,

𝐼2 = 2𝜆 + 𝜆−2 ,

𝐼4 = 𝜆2 sin2(𝛼1 − 𝛾1) + 𝜆−1 cos2(𝛼1 − 𝛾1) ,

𝐼5 = 𝜆4 sin2(𝛼1 − 𝛾1) + 𝜆−2 cos2(𝛼1 − 𝛾1) ,

𝐼6 = 𝜆2 sin2(𝛼2 − 𝛾2) + 𝜆−1 cos2(𝛼2 − 𝛾2) ,

𝐼7 = 𝜆4 sin2(𝛼2 − 𝛾2) + 𝜆−2 cos2(𝛼2 − 𝛾2) ,

𝐼8 =
1
𝜆
cos(𝛼2 − 𝛼1 + 𝛾1 − 𝛾2)

[

𝜆3 sin(𝛼1 − 𝛾1) sin(𝛼2 − 𝛾2) + cos(𝛼1 − 𝛾1) cos(𝛼2 − 𝛾2)
]

,

𝐼9 = cos2(𝛾1 − 𝛾2 + 𝛼2 − 𝛼1) .

(4.29)

25 Notice that (4.6) is a subset of Family 3 universal deformations (Ericksen, 1954), and the fiber distributions (4.28) are universal material preferred
directions (Yavari and Goriely, 2021). This implies that the deformations (4.6) can be maintained in the absence of body forces for any incompressible isotropic
solid cylinder reinforced by the two families of fibers with distributions given in (4.28).
24
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Fig. 5. Finite extension of a transversely isotropic cylindrical bar under force-control loading for two fiber-to-matrix modulus ratios: (a) 𝜇1∕𝐶1 = 20 and (b)
𝜇1∕𝐶1 = 5. The remodeled fiber orientation 𝛾0 − 𝛼(𝑡) and stretch 𝜆(𝑡) are plotted with normalized time 𝑡∕𝜏1 for −𝜅𝑀∕𝐾 = 2 and seven initial fiber orientations,
𝛾0, in equal increments of 𝜋∕12 from 0 to 𝜋∕2.

Fig. 6. Evolution of (a) remodeled fiber orientation 𝛾0 − 𝛼(𝑡), (b) stretch 𝜆(𝑡), and (c) stress components 𝜎̂𝑎𝑏(0.5𝑅0 , 𝑡), during one and a half cycles of
loading–unloading as defined by (4.26).

Stress and equilibrium equations. The non-zero components of the Cauchy stress are:

𝜎𝑟𝑟(𝑅, 𝑡) = −𝑝 + 2𝜆−1𝑊1 − 2𝜆𝑊2 , (4.30)

𝜎𝜃𝜃(𝑅, 𝑡) = −𝑝 𝜆
𝑅2

+
2𝑊1

𝑅2
−

2𝜆2𝑊2

𝑅2
+

2
(

𝜆𝑊4 + 2𝑊5
)

𝑅2𝜆(𝑡)
cos2(𝛼1 − 𝛾1) +

2
(

𝜆𝑊6 + 2𝑊7
)

𝑅2𝜆(𝑡)
cos2(𝛼2 − 𝛾2)

+ 4
𝑅2

cos(𝛼1 − 𝛾1) cos(𝛼2 − 𝛾2) cos(𝛼2 − 𝛼1 + 𝛾1 − 𝛾2)𝑊8 ,

(4.31)

𝜎𝑧𝑧(𝑅, 𝑡) = −𝑝 + 2𝜆2𝑊1 − 2𝜆−2(𝑡)𝑊2 + 2𝜆2
[

𝑊4 + 2𝜆2𝑊5
]

sin2(𝛼1 − 𝛾1) + 2𝜆2
[

𝑊6 + 2𝜆2𝑊7
]

sin2(𝛼2 − 𝛾2)

+ 4𝜆2 sin(𝛼1 − 𝛾1) sin(𝛼2 − 𝛾2) cos(𝛼2 − 𝛼1 + 𝛾1 − 𝛾2)𝑊8 ,
(4.32)

and

𝜎𝜃𝑧(𝑅, 𝑡) = −
𝜆𝑊4 +

(

1 + 𝜆3
)

𝑊5 sin
[

2(𝛼 − 𝛾 )
]

−
𝜆𝑊6 +

(

1 + 𝜆3
)

𝑊7 sin
[

2(𝛼 − 𝛾 )
]

−
𝜆𝑊8

{

sin
[

2(𝛼 − 𝛾 )
]

+ sin
[

2(𝛼 − 𝛾 )
]

}

.

25
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(4.33)

The radial equilibrium equation is written as (the other two equilibrium equations imply that 𝑝 = 𝑝(𝑅, 𝑡))

𝜕
𝜕𝑅

𝜎𝑟𝑟(𝑅, 𝑡) =
2
(

𝜆𝑊4 + 2𝑊5
)

𝑅𝜆2
cos2(𝛼1 − 𝛾1) +

2
(

𝜆𝑊6 + 2𝑊7
)

𝑅𝜆2
cos2(𝛼2 − 𝛾2) +

4𝑊8
𝑅𝜆

cos(𝛼1 − 𝛾1) cos(𝛼2 − 𝛾2) cos(𝛼2 − 𝛼1 + 𝛾1 − 𝛾2) .

(4.34)

sing the boundary condition 𝜎𝑟𝑟(𝑅0, 𝑡) = 0, one obtains

𝜎𝑟𝑟(𝑅, 𝑡) = − 2
𝜆2 ∫

𝑅0

𝑅

𝜆𝑊4 + 2𝑊5
𝜉

cos2(𝛼1 − 𝛾1) 𝑑𝜉 −
2
𝜆2 ∫

𝑅0

𝑅

𝜆𝑊6 + 2𝑊7
𝜉

cos2(𝛼2 − 𝛾2) 𝑑𝜉

− 4
𝜆 ∫

𝑅0

𝑅

𝑊8
𝜉

cos(𝛼1 − 𝛾1) cos(𝛼2 − 𝛾2) cos(𝛼2 − 𝛼1 + 𝛾1 − 𝛾2) 𝑑𝜉 .

(4.35)

his, in particular, implies that

−𝑝 = − 2
𝜆2 ∫

𝑅0

𝑅

𝜆𝑊4 + 2𝑊5
𝜉

cos2(𝛼1 − 𝛾1) 𝑑𝜉 −
2
𝜆2 ∫

𝑅0

𝑅

𝜆𝑊6 + 2𝑊7
𝜉

cos2(𝛼2 − 𝛾2) 𝑑𝜉

− 4
𝜆 ∫

𝑅0

𝑅

𝑊8
𝜉

cos(𝛼1 − 𝛾1) cos(𝛼2 − 𝛾2) cos(𝛼2 − 𝛼1 + 𝛾1 − 𝛾2) 𝑑𝜉 − 2𝜆−1𝑊1 + 2𝜆𝑊2 .

(4.36)

hus, the non-zero physical components of stress read (recall that 𝜎̂𝑟𝑟 = 𝜎𝑟𝑟)

𝜎̂𝜃𝜃(𝑅, 𝑡) =
2
(

𝜆𝑊4 + 2𝑊5
)

𝜆2
cos2(𝛼1 − 𝛾1) +

2
(

𝜆𝑊6 + 2𝑊7
)

𝜆2
cos2(𝛼2 − 𝛾2)

+ 4
𝜆
cos(𝛼1 − 𝛾1) cos(𝛼2 − 𝛾2) cos(𝛼2 − 𝛼1 + 𝛾1 − 𝛾2)𝑊8

− 2
𝜆2 ∫

𝑅0

𝑅

𝜆𝑊4 + 2𝑊5
𝜉

cos2(𝛼1 − 𝛾1) 𝑑𝜉 −
2
𝜆2 ∫

𝑅0

𝑅

𝜆𝑊6 + 2𝑊7
𝜉

cos2(𝛼2 − 𝛾2) 𝑑𝜉

− 4
𝜆 ∫

𝑅0

𝑅

𝑊8
𝜉

cos(𝛼1 − 𝛾1) cos(𝛼2 − 𝛾2) cos(𝛼2 − 𝛼1 + 𝛾1 − 𝛾2) 𝑑𝜉 ,

(4.37)

𝜎̂𝑧𝑧(𝑅, 𝑡) = 2
[

𝜆2 − 𝜆−1
]

𝑊1 + 2
[

𝜆 − 𝜆−2
]

𝑊2 + 2𝜆2
[

𝑊4 + 2𝜆2𝑊5
]

sin2(𝛼1 − 𝛾1) + 2𝜆2
[

𝑊6 + 2𝜆2𝑊7
]

sin2(𝛼2 − 𝛾2)

− 2
𝜆2 ∫

𝑅0

𝑅

𝜆𝑊4 + 2𝑊5
𝜉

cos2(𝛼1 − 𝛾1) 𝑑𝜉 −
2
𝜆2 ∫

𝑅0

𝑅

𝜆𝑊6 + 2𝑊7
𝜉

cos2(𝛼2 − 𝛾2) 𝑑𝜉

− 4
𝜆 ∫

𝑅0

𝑅

𝑊8
𝜉

cos(𝛼1 − 𝛾1) cos(𝛼2 − 𝛾2) cos(𝛼2 − 𝛼1 + 𝛾1 − 𝛾2) 𝑑𝜉 ,

(4.38)

nd

𝜎̂𝜃𝑧(𝑅, 𝑡) = −
𝜆𝑊4 +

[

1 + 𝜆3
]

𝑊5

𝜆
1
2

sin
[

2(𝛼1 − 𝛾1)
]

−
𝜆𝑊6 +

[

1 + 𝜆3
]

𝑊7

𝜆
1
2

sin
[

2(𝛼2 − 𝛾2)
]

− 𝜆
1
2
{

sin
[

2(𝛼1 − 𝛾1)
]

+ sin
[

2(𝛼2 − 𝛾2)
]

}

𝑊8 .

(4.39)

The axial force. For displacement-control loading, 𝜆(𝑡) is given while 𝛼1(𝑅, 𝑡) and 𝛼2(𝑅, 𝑡) are unknowns that are governed by the
emodeling equations. For force-control loadings, the unknowns of the problem are 𝜆(𝑡), 𝛼1(𝑅, 𝑡), and 𝛼2(𝑅, 𝑡). In this case, at the
wo ends of the bar (𝑍 = 0, 𝐿), the axial force required to maintain the deformation is given in (4.14). Thus

2
(

𝜆 − 𝜆−2
)

∫

𝑅0

0
𝑊1 𝑅𝑑𝑅 + 2

(

1 − 𝜆−3
)

∫

𝑅0

0
𝑊2 𝑅𝑑𝑅

+ 2𝜆∫

𝑅0

0
𝑅
(

𝑊4 + 2𝜆2𝑊5
)

sin2(𝛼1 − 𝛾1) 𝑑𝑅 + 2𝜆∫

𝑅0

0
𝑅
(

𝑊6 + 2𝜆2𝑊7
)

sin2(𝛼2 − 𝛾2) 𝑑𝑅

− 2
𝜆3 ∫

𝑅0

0
𝑅∫

𝑅0

𝑅

𝜆𝑊4 + 2𝑊5
𝜉

cos2(𝛼1 − 𝛾1) 𝑑𝜉 𝑑𝑅 − 2
𝜆3 ∫

𝑅0

0
𝑅∫

𝑅0

𝑅

𝜆𝑊6 + 2𝑊7
𝜉

cos2(𝛼2 − 𝛾2) 𝑑𝜉 𝑑𝑅

− 4 𝑅0
𝑅

𝑅0 𝑊8 cos(𝛼1 − 𝛾1) cos(𝛼2 − 𝛾2) cos(𝛼2 − 𝛼1 + 𝛾1 − 𝛾2) 𝑑𝜉 𝑑𝑅 =
𝐹 (𝑡)

.

(4.40)
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The remodeling equation. The remodeling equations (3.72) are simplified to read

𝐾1 𝛼̇1 +𝐾3 cos(−𝛼1 + 𝛼2 + 𝛾1 − 𝛾2) 𝛼̇2 = −1
2
𝜅1 sin 2(𝛼1 − 𝛾1) +

1 − 𝜆3

2𝜆2
[

𝜆(2𝑊4 +𝑊8) + 2
(

𝜆3 + 1
)

𝑊5
]

sin 2(𝛼1 − 𝛾1)

− 1
2𝜆

[

(𝜆3 + 1)𝑊8 + 2𝜆𝑊9
]

sin 2(𝛼2 − 𝛼1 + 𝛾1 − 𝛾2) ,

𝐾2 𝛼̇2 +𝐾3 cos(−𝛼1 + 𝛼2 + 𝛾1 − 𝛾2) 𝛼̇1 = −1
2
𝜅2 sin 2(𝛼2 − 𝛾2) +

1 − 𝜆3

2𝜆2
(

𝜆(2𝑊6 +𝑊8) + 2
(

𝜆3 + 1
)

𝑊7
)

sin 2(𝛼2 − 𝛾2)

+ 1
2𝜆

(

𝜆3𝑊8 +𝑊8 + 2𝜆𝑊9
)

sin(2(𝛼2 − 𝛼1 + 𝛾1 − 𝛾2)) .

(4.41)

imilarly, the remodeling equations (3.73) read26

𝐾1 𝛼̇1 +𝐾3 cos(−𝛼1 + 𝛼2 + 𝛾1 − 𝛾2) 𝛼̇2 =
1
2
𝜅1 sgn(sin(𝛾1 − 𝛼1)) sin 2(𝛾1 − 𝛼1) +

1 − 𝜆3

2𝜆2
[

𝜆(2𝑊4 +𝑊8) + 2
(

𝜆3 + 1
)

𝑊5
]

sin 2(𝛼1 − 𝛾1)

− 1
2𝜆

[

(𝜆3 + 1)𝑊8 + 2𝜆𝑊9
]

sin 2(𝛼2 − 𝛼1 + 𝛾1 − 𝛾2) ,

𝐾2 𝛼̇2 +𝐾3 cos(−𝛼1 + 𝛼2 + 𝛾1 − 𝛾2) 𝛼̇1 =
1
2
𝜅2 sgn(sin(𝛾2 − 𝛼2)) sin 2(𝛾2 − 𝛼2) +

1 − 𝜆3

2𝜆2
(

𝜆(2𝑊6 +𝑊8) + 2
(

𝜆3 + 1
)

𝑊7
)

sin 2(𝛼2 − 𝛾2)

+ 1
2𝜆

(

𝜆3𝑊8 +𝑊8 + 2𝜆𝑊9
)

sin(2(𝛼2 − 𝛼1 + 𝛾1 − 𝛾2)) .

(4.42)

For the numerical examples, we consider the following generalized incompressible Mooney–Rivlin reinforced model for which

𝑊 = 𝐶1(𝐼1 − 3) + 𝐶2(𝐼2 − 3) +
𝜇1
2

[

(𝐼4 − 1)2 + (𝐼6 − 1)2
]

+
𝜇2
2

[

(𝐼5 − 1)2 + (𝐼7 − 1)2
]

+
𝜇3
2
(𝐼8 − 𝐼9)2 , (4.43)

here 𝐶1, 𝐶2, 𝜇1, 𝜇2, and 𝜇3 are positive constants. Thus, 𝑊1 = 𝐶1, 𝑊2 = 𝐶2, 𝑊4 = 𝜇1(𝐼4 − 1), 𝑊5 = 𝜇2(𝐼5 − 1), 𝑊6 = 𝜇1(𝐼6 − 1),
𝑊7 = 𝜇2(𝐼7 − 1), 𝑊8 = 𝜇3(𝐼8 − 𝐼9), and 𝑊9 = 𝜇3

(

𝐼9 − 𝐼8
)

.

Numerical results. Similar to the last example, we consider a displacement-control loading: 𝜆(𝑡) = 1 + (𝜆0 − 1) erf
( 𝑡
𝑡0

)

with 𝑡0 = 1.
The material constants in the constitutive model are taken to be 𝐶1 = 0.05, 𝐶2 = 0, 𝜇1 = 1, and 𝜇2 = 0. The parameters 𝐾1, 𝐾2,

3 are fixed at 𝐾1 = 𝐾2 = 𝐾 = 0.001 and 𝐾3 = 0.0001. We again define a relaxation time 𝜏1 = 𝐾1∕𝜇1. We assume that 𝛾1(𝑅) = 𝛾0
nd 𝛾2(𝑅) = −𝛾0 − 𝜋∕12. Again, it is assumed that the preferred orientation for fibers is the direction of maximum principal strain,
amely, 𝐌 = 𝐍𝐂

max = 𝐄𝑍 . The parameters 𝜅𝑀1 and 𝜅𝑀2 are taken to be equal: 𝜅𝑀1 = 𝜅𝑀2 = 𝜅𝑀 . The parameters 𝛾0, 𝜅𝑀 , and 𝜆0
are varied in order to investigate their impact on the fiber reorientation. Similar behavior is observed as the previous example. The
final remodeled fiber orientation is independent of the initial fiber orientation angle 𝛾0. A larger value for −𝜅𝑀 or a smaller value
for 𝜆0 results in a remodeling-energy-dominant remodeling, whereas a smaller value of −𝜅𝑀 or a larger value of 𝜆0 results in a
strain–energy-dominant remodeling.

Fig. 7 shows the results for the remodeling process as a function of normalized time for 𝜆0 = 1.1 and various values of 𝛾0 and
𝜅𝑀 . Final fiber orientation for both families of fibers is the same even though the initial orientations are different, and it increases
in absolute value from 𝜋∕5 to 𝜋∕2 as the ratio −𝜅𝑀∕𝐾 is increased. The value of the coupling parameter 𝐾3 does not affect the final
orientation. The quantitative impact of 𝜆0 is similar to the previous example. Of particular interest is the non-monotonicity of the
fiber remodeling process as a function of time, as evident in Fig. 7(b). During 𝑡∕𝜏1 ∈ (0, 1 × 103], the applied stretch is increasing
from 1. Initially, when stretch is low, the remodeling energy is dominant, and for large values of −𝜅𝑀 , fibers can quickly remodel
themselves to be almost aligned with the direction of loading. However, as the stretch stops increasing, strain energy becomes more
dominant, and fibers suddenly reorient themselves in a different direction. A visual representation of these two changes in the final
fiber orientation with time is shown in Fig. 8.

4.3. Example 3: Finite torsion of a transversely isotropic circular cylindrical bar

In this example, we consider a remodeling solid circular cylindrical bar that, in its undeformed configuration, has radius 𝑅0 and
length 𝐿 and is reinforced by a family of fibers with distribution given in (4.5). The remodeling tensor (4.4) is assumed, and hence,
at time 𝑡 the fiber distribution is given in (4.5). Let us assume the following deformation mappings

𝑟 = 𝑟(𝑅, 𝑡) , 𝜃 = 𝛩 + 𝜓(𝑡)𝑍 , 𝑧 = 𝜆(𝑡)𝑍 , (4.44)

26 Our numerical results show that the two remodeling equations (4.41) and (4.42) give very similar results. We use (4.41) in our numerical examples.
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Fig. 7. Finite extension of a monoclinic cylindrical bar under displacement-control loading. The remodeled fiber orientation of the two fiber families: 𝛾1 − 𝛼1(𝑡)
and 𝛾2 − 𝛼2(𝑡) are plotted as a function of 𝑡∕𝜏1, where 𝜏1 is the material’s relaxation time. Three values of the ratio −𝜅𝑀∕𝐾 = 1, 100, and 1000 are chosen. The
initial fiber orientation of the two families is 𝛾0 and −𝛾0 − 𝜋∕12. Six values of 𝛾0 (corresponding to different colors) are investigated in equal increments of 𝜋∕12
ranging from 𝜋∕12 to 𝜋∕3 for each value of the ratio 𝜅∕𝐾.

Fig. 8. Remodeling of fiber orientation for a monoclinic bar under finite extension shown in the reference configuration as a function of time with −𝜅𝑀∕𝐾 = 100
and 𝜆0 = 1.1. At 𝑡∕𝜏1 = 0, when the applied stretch is 1, both fiber families are in their initial orientation 𝜋∕6 and −𝜋∕4. As the applied stretch starts to increase,
the fibers align almost along the direction of loading. After 𝑡 = 1, when the applied stretch stops increasing, the fibers again remodel to 𝜋∕3.

where 𝜓(𝑡) is twist per unit length, and 𝜆(𝑡) is the axial stretch.27 In a twist-control loading 𝜓(𝑡) is given while 𝜆(𝑡) is an unknown
to be calculated. In a torque-control loading, both 𝜓(𝑡) and 𝜆(𝑡) are unknown functions. The deformation gradient reads

𝐅 = 𝐅(𝑅, 𝑡) =
⎡

⎢

⎢

⎣

𝑟′(𝑅, 𝑡) 0 0
0 1 𝜓(𝑡)
0 0 𝜆(𝑡)

⎤

⎥

⎥

⎦

, (4.45)

where 𝑟′(𝑅, 𝑡) = 𝜕𝑟(𝑅,𝑡)
𝜕𝑅 . The incompressibility implies that

𝐽 =
√

det 𝐠
det𝐆

det 𝐅 =
𝜆(𝑡) 𝑟(𝑅, 𝑡) 𝑟′(𝑅, 𝑡)

𝑅
= 1 . (4.46)

27 It should be noted that (4.44) is a subset of Family 3 universal deformations (Ericksen, 1954), and the fiber distribution (4.5) are universal material preferred
directions (Yavari and Goriely, 2021). This means that the deformations (4.44) can be maintained in the absence of body forces for any incompressible isotropic
solid cylinder reinforced by fibers with distribution given in (4.5).
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T

a

W

Assuming that 𝑟(0, 𝑡) = 0, we have 𝑟(𝑅, 𝑡) = 𝑅
√

𝜆(𝑡)
. The right Cauchy–Green strain reads

𝐂 = [𝐶𝐴𝐵] =

⎡

⎢

⎢

⎢

⎢

⎣

1
𝜆(𝑡) 0 0

0 1
𝜆(𝑡)

𝜓(𝑡)
𝜆(𝑡)

0 𝑅2𝜓(𝑡)
𝜆(𝑡) 𝜆2(𝑡) + 𝑅2𝜓2(𝑡)

𝜆(𝑡)

⎤

⎥

⎥

⎥

⎥

⎦

. (4.47)

he maximum eigenvalue of 𝐂 is

1 + 𝜆3 + 𝑅2𝜓2 +
√

(

𝜆3 − 1
)2 + 𝑅2𝜓2

(

2𝜆3 + 𝑅2𝜓2 + 2
)

2𝜆
, (4.48)

nd

𝐍𝐂
max =

⎡

⎢

⎢

⎢

⎢

⎣

0

1−𝜆3−𝑅2𝜓2+
√

(𝜆3−1)2+2(𝜆3+1)𝑅2𝜓2+𝑅4𝜓4

2𝑅2𝜓

1

⎤

⎥

⎥

⎥

⎥

⎦

. (4.49)

e assume the initial fiber distribution (4.5). The remodeling tensor is given in (4.4). The principal invariants read

𝐼1 = 𝜆2(𝑡) + 2𝜆−1(𝑡) +
𝑅2𝜓2(𝑡)
𝜆(𝑡)

,

𝐼2 = 2𝜆(𝑡) + 𝜆−2(𝑡) +
𝑅2𝜓2(𝑡)
𝜆2(𝑡)

,

𝐼4 =
[

𝜆2(𝑡) + 𝑅2𝜓2𝜆−1(𝑡)
]

sin2 [𝛼(𝑅, 𝑡) − 𝛾(𝑅)] + 𝑅𝜓(𝑡)𝜆−1(𝑡) sin [2(𝛾(𝑅) − 𝛼(𝑅, 𝑡))]

+ 𝜆−1(𝑡) cos2 [𝛼(𝑅, 𝑡) − 𝛾(𝑅)] ,

𝐼5 =

(

𝜆3(𝑡) + 𝑅2𝜓2(𝑡)
)2 + 2𝑅2𝜓2(𝑡) + 1

2𝜆2(𝑡)
−

[

𝜆3(𝑡) + 𝑅2𝜓2(𝑡)
]2 − 1

2𝜆2(𝑡)
cos [2(𝛾(𝑅) − 𝛼(𝑅, 𝑡))]

+
𝑅𝜓(𝑡)

(

𝜆3(𝑡) + 𝑅2𝜓2(𝑡) + 1
)

𝜆2(𝑡)
sin [2(𝛾(𝑡) − 𝛼(𝑅, 𝑡))] .

(4.50)

The non-zero components of the Cauchy stress are written as28:

𝜎𝑟𝑟(𝑅, 𝑡) = −𝑝(𝑅, 𝑡) + 2𝜆−1(𝑡)𝑊1 − 2𝜆(𝑡)𝑊2 , (4.52)

𝜎𝜃𝜃(𝑅, 𝑡) = −
𝑝(𝑅, 𝑡)𝜆(𝑡)

𝑅2
+ 2

( 1
𝑅2

+ 𝜓2(𝑡)
)

𝑊1 −
2𝜆2(𝑡)
𝑅2

𝑊2 +
2
𝑅2

[𝑅𝜓(𝑡) sin(𝛾(𝑅) − 𝛼(𝑅, 𝑡)) + cos(𝛾(𝑅) − 𝛼(𝑅, 𝑡))]2 𝑊4

+ 4
𝜆(𝑡)𝑅2

[𝑅𝜓(𝑡) sin(𝛾(𝑅) − 𝛼(𝑅, 𝑡)) + cos(𝛾(𝑅) − 𝛼(𝑅, 𝑡))] (4.53)

×
[

𝑅𝜓(𝑡)
(

𝜆3(𝑡) + 𝑅2𝜓2(𝑡) + 1
)

sin(𝛾(𝑅) − 𝛼(𝑅, 𝑡)) +
(

𝑅2𝜓2(𝑡) + 1
)

cos(𝛾(𝑅) − 𝛼(𝑅, 𝑡))
]

𝑊5 ,

𝜎𝑧𝑧(𝑅, 𝑡) = −𝑝(𝑅, 𝑡) + 2𝜆2(𝑡)𝑊1 −
2
(

𝑅2𝜓2(𝑡) + 1
)

𝜆2(𝑡)
𝑊2 + 2𝜆2(𝑡) sin2(𝛾(𝑅) − 𝛼(𝑅, 𝑡))𝑊4

+ 2𝜆(𝑡)
[

2
(

𝜆3(𝑡) + 𝑅2𝜓2(𝑡)
)

sin2(𝛾(𝑅) − 𝛼(𝑅, 𝑡)) + 𝑅𝜓(𝑡) sin(2(𝛾(𝑅) − 𝛼(𝑅, 𝑡)))
]

𝑊5 ,

(4.54)

𝜎𝜃𝑧(𝑅, 𝑡) = 2𝜆(𝑡)𝜓(𝑡)𝑊1 + 2𝜓(𝑡)𝑊2 +
𝜆(𝑡)
𝑅

[−𝑅𝜓(𝑡) cos(2(𝛾(𝑅) − 𝛼(𝑅, 𝑡))) + sin(2(𝛾(𝑅) − 𝛼(𝑅, 𝑡))) + 𝑅𝜓(𝑡)] 𝑊4

+

[

𝜆3(𝑡) + 3𝑅2𝜓2(𝑡) + 1
𝑅

sin(2(𝛾(𝑅) − 𝛼(𝑅, 𝑡))) (4.55)

− 2𝜓(𝑡)
(

𝜆3(𝑡) + 𝑅2𝜓2(𝑡)
)

cos(2(𝛾(𝑅) − 𝛼(𝑅, 𝑡))) + 2𝜓(𝑡)
(

𝜆3(𝑡) + 𝑅2𝜓2(𝑡) + 1
)

]

𝑊5 .

28 The physical components of stress are:

𝜎̄𝑟𝑟 = 𝜎𝑟𝑟 , 𝜎̄𝜃𝜃 = 𝑟2𝜎𝜃𝜃 = 𝑅2

𝜆
𝜎𝜃𝜃 , 𝜎̄𝜃𝑧 = 𝑟𝜎𝜃𝑧 = 𝑅

√

𝜆
𝜎𝜃𝑧 𝜎̄𝑧𝑧 = 𝜎𝑧𝑧 . (4.51)
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w

a

T

The only nontrivial equilibrium equation is written as
𝜕
𝜕𝑅

𝜎𝑟𝑟(𝑅, 𝑡) = 𝑓 (𝑅, 𝑡) , (4.56)

here

𝑓 (𝑅, 𝑡) =
2𝑅𝜓2(𝑡)
𝜆(𝑡)

𝑊1 +
2 [𝑅𝜓(𝑡) sin(𝛾(𝑅) − 𝛼(𝑅, 𝑡)) + cos(𝛾(𝑅) − 𝛼(𝑅, 𝑡))]2

𝜆(𝑡)𝑅
𝑊4

4
𝜆2(𝑡)𝑅

[𝑅𝜓(𝑡) sin(𝛾(𝑅) − 𝛼(𝑅, 𝑡)) + cos(𝛾(𝑅) − 𝛼(𝑅, 𝑡))] (4.57)

×
[

𝑅𝜓(𝑡)
(

𝜆3(𝑡) + 𝑅2 𝜓2(𝑡) + 1
)

sin(𝛾(𝑅) − 𝛼(𝑅, 𝑡)) +
(

𝑅2 𝜓2(𝑡) + 1
)

cos(𝛾(𝑅) − 𝛼(𝑅, 𝑡))
]

𝑊5 .

Using the boundary condition 𝜎𝑟𝑟(𝑅0, 𝑡) = 0, one writes

𝜎𝑟𝑟(𝑅, 𝑡) = −∫

𝑅0

𝑅
𝑓 (𝜉, 𝑡) 𝑑𝜉 . (4.58)

This, in particular, implies that

−𝑝(𝑅, 𝑡) = −∫

𝑅0

𝑅
𝑓 (𝜉, 𝑡) 𝑑𝜉 − 2𝜆−1(𝑡)𝑊1 + 2𝜆(𝑡)𝑊2 . (4.59)

The other two diagonal components of stress are simplified to read

𝜎𝜃𝜃(𝑅, 𝑡) = −
𝜆(𝑡)
𝑅2 ∫

𝑅0

𝑅
𝑓 (𝜉, 𝑡) 𝑑𝜉 + 2𝜓2(𝑡)𝑊1 +

2
𝑅2

[𝑅𝜓(𝑡) sin(𝛾(𝑅) − 𝛼(𝑅, 𝑡)) + cos(𝛾(𝑅) − 𝛼(𝑅, 𝑡))]2 𝑊4

+ 4
𝜆(𝑡)𝑅2

[𝑅𝜓(𝑡) sin(𝛾(𝑅) − 𝛼(𝑅, 𝑡)) + cos(𝛾(𝑅) − 𝛼(𝑅, 𝑡))] ,
(4.60)

nd

𝜎𝑧𝑧(𝑅, 𝑡) = −∫

𝑅0

𝑅
𝑓 (𝜉, 𝑡) 𝑑𝜉 + 2

[

𝜆2(𝑡) − 𝜆−1(𝑡)
]

𝑊1 + 2
𝜆3(𝑡) − 𝑅2𝜓2(𝑡) − 1

𝜆2(𝑡)
𝑊2 + 2𝜆2(𝑡) sin2(𝛾(𝑅) − 𝛼(𝑅, 𝑡))𝑊4

+ 2𝜆(𝑡)
[

2
(

𝜆3(𝑡) + 𝑅2𝜓2(𝑡)
)

sin2(𝛾(𝑅) − 𝛼(𝑅, 𝑡)) + 𝑅𝜓(𝑡) sin(2(𝛾(𝑅) − 𝛼(𝑅, 𝑡)))
]

𝑊5 .

(4.61)

For a force-control loading at the two ends of the bar (𝑍 = 0, 𝐿), the axial force and torque needed to maintain the deformation are

𝐹 (𝑡) = 2𝜋 ∫

𝑅0

0
𝑃 𝑧𝑍 (𝑅, 𝑡)𝑅𝑑𝑅 = 0 , (4.62)

𝑇 (𝑡) = 2𝜋 ∫

𝑅0

0
𝑃 𝜃𝑍 (𝑅, 𝑡)𝑅2 𝑑𝑅 = 2𝜋 ∫

𝑅0

0
𝑃 𝜃𝑍 (𝑅, 𝑡) 𝑟(𝑅, 𝑡)𝑅2 𝑑𝑅 , (4.63)

where 𝑃 𝑧𝑍 = 𝑃 𝑧𝑍 is the 𝑧𝑍-component of the first Piola–Kirchhoff stress and 𝑃 𝜃𝑍 = 𝑟𝑃 𝜃𝑍 is the physical 𝜃𝑍 component of the first
Piola–Kirchhoff stress. Noting that 𝑃 𝑧𝑍 = 𝜆−1𝜎𝑧𝑧 and 𝑃 𝜃𝑍 = 𝜆−1𝜎𝜃𝑧, we have

𝑃 𝑧𝑍 (𝑅, 𝑡) = − 1
𝜆(𝑡) ∫

𝑅0

𝑅
𝑓 (𝜉, 𝑡) 𝑑𝜉 +

2
(

𝜆3(𝑡) − 1
)

𝜆2(𝑡)
𝑊1 +

2
𝜆3(𝑡)

(

𝜆3(𝑡) − 𝑅2𝜓2(𝑡) − 1
)

𝑊2 + 2𝜆(𝑡) sin2(𝛾(𝑅) − 𝛼(𝑅, 𝑡))𝑊4

+ 2
[

2
(

𝜆3(𝑡) + 𝑅2𝜓2(𝑡)
)

sin2(𝛾(𝑅) − 𝛼(𝑅, 𝑡)) + 𝑅𝜓(𝑡) sin(2(𝛾(𝑅) − 𝛼(𝑅, 𝑡)))
]

𝑊5 ,

𝑃 𝜃𝑍 (𝑅, 𝑡) =
2𝑅𝜓(𝑡)

𝜆
1
2 (𝑡)

𝑊1 +
2𝑅𝜓(𝑡)

𝜆
3
2 (𝑡)

𝑊2 + 𝜆
1
2 (𝑡) [𝑅𝜓 − 𝑅𝜓 cos 2(𝛾 − 𝛼) + sin 2(𝛾 − 𝛼)]𝑊4

+ 𝜆−
3
2 (𝑡)

{

(

1 + 𝜆3 + 3𝑅2𝜓2) sin 2(𝛾 − 𝛼) + 2𝑅𝜓
[

−
(

𝜆3 + 𝑅2𝜓2) cos 2(𝛾 − 𝛼) + 𝜆3 + 𝑅2𝜓2 + 1
]

}

𝑊5 .

(4.64)

hus, Eq. (4.62) is simplified to read

− 1
𝜆(𝑡) ∫

𝑅0

0
𝑅∫

𝑅0

𝑅
𝑓 (𝜉, 𝑡) 𝑑𝜉 𝑑𝑅 +

2
(

𝜆3(𝑡) − 1
)

𝜆2(𝑡) ∫

𝑅0

0
𝑊1 𝑅𝑑𝑅 + 2

𝜆3(𝑡) ∫

𝑅0

0

(

𝜆3(𝑡) − 𝑅2𝜓2(𝑡) − 1
)

𝑊2 𝑅𝑑𝑅

+ 2𝜆(𝑡)∫

𝑅0

0
sin2(𝛾(𝑅) − 𝛼(𝑅, 𝑡))𝑊4𝑅𝑑𝑅 (4.65)

+ 2∫

𝑅0

0

[

2
(

𝜆3(𝑡) + 𝑅2𝜓2(𝑡)
)

sin2(𝛾(𝑅) − 𝛼(𝑅, 𝑡)) + 𝑅𝜓(𝑡) sin(2(𝛾(𝑅) − 𝛼(𝑅, 𝑡)))
]

𝑅𝑊5 𝑑𝑅 = 0 .

Similarly, Eq. (4.63) is rewritten as

2𝜓(𝑡)
1 ∫

𝑅0
𝑊1𝑅

3 𝑑𝑅 +
2𝜓(𝑡)

3 ∫

𝑅0
𝑊2 𝑅

3 𝑑𝑅 + 1
1 ∫

𝑅0
𝑅2𝑊4 [𝑅𝜓 − 𝑅𝜓 cos 2(𝛾 − 𝛼) + sin 2(𝛾 − 𝛼)] 𝑑𝑅
30
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S

T

F

+ 1

𝜆
3
2 (𝑡) ∫

𝑅0

0

{

(

𝜆3 + 3𝑅2𝜓2 + 1
)

sin 2(𝛾 − 𝛼) + 2𝑅𝜓
[

−
(

𝜆3 + 𝑅2𝜓2) cos 2(𝛾 − 𝛼) + 𝜆3 + 𝑅2𝜓2 + 1
]

}

𝑅2𝑊5 𝑑𝑅 =
𝑇 (𝑡)
2𝜋

. (4.66)

The remodeling equation (3.58) with 𝐌 = 𝐍𝐂
max is simplified to read

𝐾𝛼̇ =
𝜅𝑀

4𝑅2𝜓2

[

1 − 𝜆3 − 𝑅2𝜓2 +
√

(

𝜆3 − 1
)2 + 𝑅4𝜓4 + 2

(

𝜆3 + 1
)

𝑅2𝜓2
]

[(

𝜆3 + 𝑅2𝜓2 − 1
)

sin 2(𝛾 − 𝛼) + 2𝑅𝜓 cos 2(𝛾 − 𝛼)
]

+ 1
𝜆2

[

𝜆𝑊4 +
(

𝜆3 + 𝑅2𝜓2 + 1
)

𝑊5
] [(

𝜆3 + 𝑅2𝜓2 − 1
)

sin 2(𝛾 − 𝛼) + 2𝑅𝜓 cos 2(𝛾 − 𝛼)
]

.
(4.67)

imilarly, the remodeling equation (3.59) with 𝐌 = 𝐍𝐂
max is simplified to read29

𝐾𝛼̇ =
𝜅𝑀
2𝑅𝜓

[(

−1 + 𝜆3 + 𝑅2𝜓2 −
√

(

𝜆3 − 1
)2 + 𝑅4𝜓4 + 2

(

𝜆3 + 1
)

𝑅2𝜓2
)

sin(𝛾 − 𝛼) + 2𝑅𝜓 cos(𝛾 − 𝛼)
]

× sgn
[

1
2𝑅𝜓

(

1 − 𝜆3 − 𝑅2𝜓2 +
√

𝑅4𝜓4 + 2𝑅2
(

𝜆3 + 1
)

𝜓2 +
(

𝜆3 − 1
)2
)

cos(𝛾 − 𝛼) + sin(𝛾 − 𝛼)
]

+ 1
𝜆2

[

𝜆𝑊4 +
(

𝜆3 + 𝑅2𝜓2 + 1
)

𝑊5
] [(

𝜆3 + 𝑅2𝜓2 − 1
)

sin 2(𝛾 − 𝛼) + 2𝑅𝜓 cos 2(𝛾 − 𝛼)
]

.

(4.68)

In summary, we have the following two problems:

wist-control loading: For a given 𝜓(𝑡) in the time interval [0, 𝑇 ] solve the following problem

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

− 1
𝜆(𝑡) ∫

𝑅0

0
𝑅∫

𝑅0

𝑅
𝑓 (𝜉, 𝑡) 𝑑𝜉 𝑑𝑅 +

2
(

𝜆3(𝑡) − 1
)

𝜆2(𝑡) ∫

𝑅0

0
𝑊1 𝑅𝑑𝑅 + 2

𝜆3(𝑡) ∫

𝑅0

0

(

𝜆3(𝑡) − 𝑅2𝜓2(𝑡) − 1
)

𝑊2 𝑅𝑑𝑅

+2𝜆(𝑡)∫

𝑅0

0
sin2(𝛾(𝑅) − 𝛼(𝑅, 𝑡))𝑊4𝑅𝑑𝑅

+2∫

𝑅0

0

[

2
(

𝜆3(𝑡) + 𝑅2𝜓2(𝑡)
)

sin2(𝛾(𝑅) − 𝛼(𝑅, 𝑡)) + 𝑅𝜓(𝑡) sin(2(𝛾(𝑅) − 𝛼(𝑅, 𝑡)))
]

𝑅𝑊5 𝑑𝑅 = 0 ,

𝐾𝛼̇ =
𝜅𝑀

4𝑅2𝜓2

[

1 − 𝜆3 − 𝑅2𝜓2 +
√

(

𝜆3 − 1
)2 + 𝑅4𝜓4 + 2

(

𝜆3 + 1
)

𝑅2𝜓2
]

[(

𝜆3 + 𝑅2𝜓2 − 1
)

sin 2(𝛾 − 𝛼) + 2𝑅𝜓 cos 2(𝛾 − 𝛼)
]

+ 1
𝜆2

[

𝜆𝑊4 +
(

𝜆3 + 𝑅2𝜓2 + 1
)

𝑊5
] [(

𝜆3 + 𝑅2𝜓2 − 1
)

sin 2(𝛾 − 𝛼) + 2𝑅𝜓 cos 2(𝛾 − 𝛼)
]

,

𝜆(0) = 1 , 𝛼(𝑅, 0) = 0 .

or the material (4.20), this is simplified to

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

− 1
𝜆(𝑡) ∫

𝑅0

0
𝑅∫

𝑅0

𝑅
𝑓 (𝜉, 𝑡) 𝑑𝜉 𝑑𝑅 +

𝐶1
(

𝜆3(𝑡) − 1
)

𝜆2(𝑡)
(𝑅2

0 − 𝑅
2) +

𝐶2(𝑅2 − 𝑅2
0)

2𝜆3
[

2 − 2𝜆3 + 𝜓2 (𝑅2 + 𝑅2
0
)]

+2𝜇1𝜆(𝑡)∫

𝑅0

0
sin2(𝛾(𝑅) − 𝛼(𝑅, 𝑡)) (𝐼4 − 1)𝑅𝑑𝑅

+2𝜇2 ∫

𝑅0

0

[

2
(

𝜆3(𝑡) + 𝑅2𝜓2(𝑡)
)

sin2(𝛾(𝑅) − 𝛼(𝑅, 𝑡)) + 𝑅𝜓(𝑡) sin(2(𝛾(𝑅) − 𝛼(𝑅, 𝑡)))
]

𝑅 (𝐼5 − 1) 𝑑𝑅 = 0 ,

𝐾𝛼̇ =
𝜅𝑀

4𝑅2𝜓2

[

1 − 𝜆3 − 𝑅2𝜓2 +
√

(

𝜆3 − 1
)2 + 𝑅4𝜓4 + 2

(

𝜆3 + 1
)

𝑅2𝜓2
]

[(

𝜆3 + 𝑅2𝜓2 − 1
)

sin 2(𝛾 − 𝛼) + 2𝑅𝜓 cos 2(𝛾 − 𝛼)
]

+ 1
𝜆2

[

𝜆𝑊4 +
(

𝜆3 + 𝑅2𝜓2 + 1
)

𝑊5
] [(

𝜆3 + 𝑅2𝜓2 − 1
)

sin 2(𝛾 − 𝛼) + 2𝑅𝜓 cos 2(𝛾 − 𝛼)
]

,

𝜆(0) = 1 , 𝛼(𝑅, 0) = 0 .

29 Our numerical results show that the two remodeling equations (4.67) and (4.68) give very similar results. We use (4.67) in our numerical examples.
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Torque-control loading: For a given torque 𝑇 (𝑡) in the time interval [0, 𝑇 ] solve the following problem

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

− 1
𝜆(𝑡) ∫

𝑅0

0
𝑅∫

𝑅0

𝑅
𝑓 (𝜉, 𝑡) 𝑑𝜉 𝑑𝑅 +

2
(

𝜆3(𝑡) − 1
)

𝜆2(𝑡) ∫

𝑅0

0
𝑊1 𝑅𝑑𝑅 + 2

𝜆3(𝑡) ∫

𝑅0

0

(

𝜆3(𝑡) − 𝑅2𝜓2(𝑡) − 1
)

𝑊2 𝑅𝑑𝑅

+2𝜆(𝑡)∫

𝑅0

0
sin2(𝛾(𝑅) − 𝛼(𝑅, 𝑡))𝑊4𝑅𝑑𝑅

+2∫

𝑅0

0

[

2
(

𝜆3(𝑡) + 𝑅2𝜓2(𝑡)
)

sin2(𝛾(𝑅) − 𝛼(𝑅, 𝑡)) + 𝑅𝜓(𝑡) sin(2(𝛾(𝑅) − 𝛼(𝑅, 𝑡)))
]

𝑅𝑊5 𝑑𝑅 = 0 ,

2𝜓(𝑡)

𝜆
1
2 (𝑡) ∫

𝑅0

0
𝑊1𝑅

3 𝑑𝑅 +
2𝜓(𝑡)

𝜆
3
2 (𝑡) ∫

𝑅0

0
𝑊2 𝑅

3 𝑑𝑅 + 1

𝜆
1
2 (𝑡) ∫

𝑅0

0
𝑅2𝑊4 [𝑅𝜓 − 𝑅𝜓 cos 2(𝛾 − 𝛼) + sin 2(𝛾 − 𝛼)] 𝑑𝑅

+ 1

𝜆
3
2 (𝑡) ∫

𝑅0

0

{

(

𝜆3 + 3𝑅2𝜓2 + 1
)

sin 2(𝛾 − 𝛼) + 2𝑅𝜓
[

−
(

𝜆3 + 𝑅2𝜓2) cos 2(𝛾 − 𝛼) + 𝜆3 + 𝑅2𝜓2 + 1
]

}

𝑅2𝑊5 𝑑𝑅 =
𝑇 (𝑡)
2𝜋

,

𝐾𝛼̇ =
𝜅𝑀

4𝑅2𝜓2

[

1 − 𝜆3 − 𝑅2𝜓2 +
√

(

𝜆3 − 1
)2 + 𝑅4𝜓4 + 2

(

𝜆3 + 1
)

𝑅2𝜓2
]

[(

𝜆3 + 𝑅2𝜓2 − 1
)

sin 2(𝛾 − 𝛼) + 2𝑅𝜓 cos 2(𝛾 − 𝛼)
]

+ 1
𝜆2

[

𝜆𝑊4 +
(

𝜆3 + 𝑅2𝜓2 + 1
)

𝑊5
] [(

𝜆3 + 𝑅2𝜓2 − 1
)

sin 2(𝛾 − 𝛼) + 2𝑅𝜓 cos 2(𝛾 − 𝛼)
]

,

𝜆(0) = 1 , 𝜓(0) = 0 , 𝛼(𝑅, 0) = 0 .

or the material (4.20) this is simplified to

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

− 1
𝜆(𝑡) ∫

𝑅0

0
𝑅∫

𝑅0

𝑅
𝑓 (𝜉, 𝑡) 𝑑𝜉 𝑑𝑅 +

𝐶1
(

𝜆3(𝑡) − 1
)

𝜆2(𝑡)
(𝑅2

0 − 𝑅
2) +

𝐶2(𝑅2 − 𝑅2
0)

2𝜆3
[

2 − 2𝜆3 + 𝜓2 (𝑅2 + 𝑅2
0
)]

+2𝜇1𝜆(𝑡)∫

𝑅0

0
sin2(𝛾(𝑅) − 𝛼(𝑅, 𝑡)) (𝐼4 − 1)𝑅𝑑𝑅

+2𝜇2 ∫

𝑅0

0

[

2
(

𝜆3(𝑡) + 𝑅2𝜓2(𝑡)
)

sin2(𝛾(𝑅) − 𝛼(𝑅, 𝑡)) + 𝑅𝜓(𝑡) sin(2(𝛾(𝑅) − 𝛼(𝑅, 𝑡)))
]

𝑅 (𝐼5 − 1) 𝑑𝑅 = 0 ,

𝜓(𝑡)

2𝜆
1
2 (𝑡)

(

𝐶1 +
𝐶1
𝜆(𝑡)

)

(𝑅4
0 − 𝑅

4) + 1

𝜆
1
2 (𝑡) ∫

𝑅0

𝑅
𝑅2𝑊4 [𝑅𝜓 − 𝑅𝜓 cos 2(𝛾 − 𝛼) + sin 2(𝛾 − 𝛼)] 𝑑𝑅

+ 1

𝜆
3
2 (𝑡) ∫

𝑅0

0

{

(

𝜆3 + 3𝑅2𝜓2 + 1
)

sin 2(𝛾 − 𝛼) + 2𝑅𝜓
[

−
(

𝜆3 + 𝑅2𝜓2) cos 2(𝛾 − 𝛼) + 𝜆3 + 𝑅2𝜓2 + 1
]

}

𝑅2𝑊5 𝑑𝑅 =
𝑇 (𝑡)
2𝜋

,

𝐾𝛼̇ =
𝜅𝑀

4𝑅2𝜓2

[

1 − 𝜆3 − 𝑅2𝜓2 +
√

(

𝜆3 − 1
)2 + 𝑅4𝜓4 + 2

(

𝜆3 + 1
)

𝑅2𝜓2
]

[(

𝜆3 + 𝑅2𝜓2 − 1
)

sin 2(𝛾 − 𝛼) + 2𝑅𝜓 cos 2(𝛾 − 𝛼)
]

+ 1
𝜆2

[

𝜆𝑊4 +
(

𝜆3 + 𝑅2𝜓2 + 1
)

𝑊5
] [(

𝜆3 + 𝑅2𝜓2 − 1
)

sin 2(𝛾 − 𝛼) + 2𝑅𝜓 cos 2(𝛾 − 𝛼)
]

,

𝜆(0) = 1 , 𝛼(𝑅, 0) = 0 .

umerical results. For the numerical parametric study, we use the same material constants as the previous two examples.
urthermore, we again assume 𝛾(𝑅) = 𝛾0. However, with this choice for 𝛾(𝑅), unlike the previous examples, the remodeling variable
will still depend on the spatial variable 𝑅 in addition to 𝑡.

We first consider a twist-control loading 𝜓(𝑡) = 𝜓0 erf
( 𝑡
𝑡0

)

with 𝑡0 = 1. Similar to the previous examples, the effect of −𝜅𝑀∕𝐾,
0, and the maximum twist 𝜓0 on the remodeled fiber orientation 𝛾0 − 𝛼(𝑅, 𝑡) is studied and is shown in Fig. 9 for three values of 𝑅,

namely, 𝑅 = 0.1, 0.5, 1.0 𝑅0. Furthermore, we are also interested in studying the effects of various parameters in the model on the
ongitudinal extension of the twisted bar. Those results are also included in Fig. 9.

A variety of interesting behavior is observed. First, irrespective of the choice of values for the parameters, a spatially
nhomogeneous fiber orientation is achieved after remodeling. Second, the results in Fig. 9 show that a remodeled fiber orientation
s typically larger, that is, they align more longitudinally, for larger values of initial fiber orientation, smaller values of −𝜅𝑀∕𝐾,

and smaller values of 𝜓0. Moreover, the fibers also align more longitudinally for larger values of 𝑅 in the cylinder as also shown
visually in Fig. 10. However, the spatial inhomogeneity means that there are exceptions where the above-mentioned trends are
not followed, as visible in both Figs. 9 and 10. Third, as shown in Fig. 9(a), for large values of −𝜅𝑀∕𝐾—when the remodeling
energy is dominant—the fibers remodel such that the bar unexpectedly shortens in length instead of elongating. For −𝜅𝑀∕𝐾 = 103,
a maximum stretch of 0.965 is observed compared to a stretch of 1.015 for −𝜅𝑀∕𝐾 = 0. This effect is strongest for larger values of
the initial fiber orientation, as further highlighted in Fig. 9(b).

We next consider a torque-control loading in the same form 𝑇 (𝑡) = 𝑇0 erf
( 𝑡
𝑡0

)

with 𝑡0 = 1. The dependence of the magnitude of
loading and initial fiber orientation on the remodeling variable and the longitudinal extension is similar for torque-control loading as
32

for twist-control loading. The effect of the ratio −𝜅𝑀∕𝐾 on the observed twist 𝜓(𝑡) is more interesting. Fig. 11 shows the remodeled
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Fig. 9. Finite torsion of a transversely isotropic cylindrical bar under twist-control loading. The applied twist is 𝜓(𝑡) = 𝜓0 erf
( 𝑡
𝑡0

)

with 𝑡0 = 1. Remodeled fiber
orientation 𝛾0 − 𝛼(𝑅, 𝑡) is plotted on the left 𝑦-axis for three values of 𝑅, and the observed longitudinal extension 𝜆(𝑡) is plotted on the right 𝑦-axis as a function
of 𝑡∕𝜏1, where 𝜏1 is the material’s relaxation time. Part (a) shows the effect of the ratio −𝜅𝑀∕𝐾, part (b) shows the effect of the initial fiber orientation, and
part (c) shows the results for different values of maximum twist 𝜓0.

fiber orientation at 𝑅 = 0.5𝑅0, 𝜓(𝑡) and 𝜆(𝑡) for three values of −𝜅𝑀∕𝐾. We observe that, as expected, for large values of −𝜅𝑀∕𝐾,
additional torsional stiffness provided by the remodeling of fibers in the direction of maximum strain results in a close to zero value
of the observed twist. However, for intermediate values of −𝜅𝑀∕𝐾, a remodeling instability ensues once the applied torque stops
increasing, resulting in a sharp jump in the remodeled fiber orientation, longitudinal extension, and twist.

Lastly, we consider a cycle of torque loading–unloading followed by a second phase of loading similar to (4.26) considered in
Example 1. The results for the observed twist, remodeled fiber orientation, stretch, and stress are presented in Fig. 12 and once
again show a loading-history-dependence but no residual stresses (see Remark 3.3). Notably, the observed twist 𝜓(𝑡) is much higher
at the end of the second loading phase than at the end of the first phase.

5. Linearized remodeling mechanics

In this section, we linearize the governing equations of the nonlinear remodeling theory. The motivation for the linearization
of the remodeling theory is applications in which strains are small, e.g., bone remodeling. For the sake of simplicity, we restrict
the analysis to isotropic solids. Let us consider a stress-free body  with its flat material metric 𝐆̊. We linearize with respect to the
33
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Fig. 10. Remodeled fiber orientation 𝛾0 − 𝛼(𝑅, 𝑡) for a transversely isotropic cylindrical bar under torsion at three values of 𝑅, namely, 𝑅 = 0.1, 0.5, 1.0 𝑅0 for
three values of ratio −𝜅𝑀∕𝐾.

Fig. 11. Finite torsion of a transversely isotropic cylindrical bar under torque-control loading. The applied torque is 𝑇 (𝑡) = 𝑇0 erf
( 𝑡
𝑡0

)

with 𝑡0 = 1. Remodeled
fiber orientation 𝛾0 − 𝛼(𝑅, 𝑡) for 𝑅 = 0.5 𝑅0 and the observed twist 𝜓(𝑡) are plotted on the left 𝑦-axis and the observed longitudinal stretch 𝜆(𝑡) is plotted on the
right 𝑦-axis as a function of 𝑡∕𝜏1, where 𝜏1 is the material’s relaxation time, for different ratios of −𝜅𝑀∕𝐾.

Fig. 12. Evolution of (a) twist 𝜓(𝑡) and remodeled fiber orientation 𝛾0 − 𝛼(0.5𝑅0 , 𝑡), and (b) stress components 𝜎̂𝑎𝑏(0.5𝑅0 , 𝑡), during one and a half cycles of
torque-control loading–unloading.

initial deformation map 𝜑̊ = 𝜄 and the trivial remodeling tensor
𝑟̊
𝐅 = 𝐈, where 𝜄 is the inclusion map, and 𝐈 is the identity map on

𝑇𝑋.30 Note that 𝐅̊ = 𝐈, and 𝐂̊♭ = 𝐆̊.

30 One can also linearize with respect to a stressed and remodeled body, i.e., the small-on-large theory of remodeling.
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5.1. Linearized kinematics

Let us consider a one-parameter family of motions and remodeling tensors 𝜑𝜖 and
𝑟
𝐅𝜖 such that 𝜑𝜖=0 = 𝜑̊, and

𝑟
𝐅𝜖=0 =

𝑟̊
𝐅. The

variation fields are defined as

𝛿𝜑 = 𝑑
𝑑𝜖

|

|

|𝜖=0
𝜑𝜖 , 𝛿

𝑟
𝐅 = 𝑑

𝑑𝜖
|

|

|𝜖=0

𝑟
𝐅𝜖 . (5.1)

ecall that
𝑟
𝐅𝜖 ∶ 𝑇𝑋 → 𝑇𝑋 for all 𝜖, and hence the above derivative is well defined. Let 𝐔 = 𝛿𝜑. The vector 𝐮 = 𝛿𝜑◦𝜑̊ is the

isplacement field of the classical theory of linear elasticity. Similarly, we call
𝑟
U = 𝛿

𝑟
𝐅 the remodeling displacement, which is a

aterial
(1
1

)

-tensor. Its spatial counterpart is denoted by 𝑟𝐮 = 𝜑̊∗
𝑟
U =

𝑟
U◦𝜑̊−1.

The right Cauchy–Green deformation tensor 𝛿𝐂♭ is linearized as

𝛿𝐂♭ = 𝜑∗
𝑡,𝜖=0𝐋𝐮𝐠 = 𝜑̊∗

(

∇𝐠𝐮♭ +
[

∇𝐠𝐮♭
]⋆

)

= 2𝜑̊∗𝝐 = 2𝜺 , (5.2)

here 𝝐 = 1
2 (∇

𝐠𝐮♭ + [∇𝐠𝐮♭]⋆) is the linearized total strain, 𝐋 is the Lie derivative operator, and 𝜺 = 𝜑̊∗𝝐. The linearization of the
elastic right Cauchy–Green strain 𝛿

𝑒
𝐂 is calculated as

𝛿
𝑒
𝐂♭ =

(

2
𝑒
𝐅⋆𝝐

𝑒
𝐅 −

𝑒
𝐂♭(𝛿

𝑟
𝐅)

𝑟
𝐅−1 −

𝑟
𝐅−⋆(𝛿

𝑟
𝐅)⋆

𝑒
𝐂♭

)

|

|

|

|𝜖=0
= 2𝜑̊∗𝝐 − 𝐆̊

𝑟
U −

𝑟
U⋆𝐆̊ = 2𝜑̊∗ (𝝐 − 𝑟𝝐

)

= 2𝜑̊∗ 𝑒𝝐 = 2 𝑒𝜺 , (5.3)

where 𝑟𝜺 = 𝜑̊∗ 𝑟𝝐 = 𝜑̊∗ 𝑟𝝐 = 1
2

(

𝐆̊
𝑟
U +

𝑟
U⋆𝐆̊

)

is the linearized remodeling strain, and 𝑒𝜺 = 𝜑̊∗ 𝑒𝝐. The linearized elastic strain is defined as
𝑒 = 1

2 𝜑̊∗𝛿
𝑒
𝐂♭. It is observed that the linearized strain is additively decomposed as 𝝐 = 𝑒𝝐+ 𝑟𝝐. The linearized Jacobian, 𝛿𝐽 is calculated

as

𝛿𝐽 = 1
2
𝐽 |𝜖=0 𝐂−1

𝜖=0 ∶𝛿𝐂 = 𝐽𝜑̊∗𝐠♯ ∶ 𝜑̊∗𝝐 = 𝐽𝐠♯ ∶𝝐 = 𝐽 tr 𝝐 . (5.4)

rom the conservation of mass 𝜌𝐽 = 𝜌𝑜, linearization of the spatial mass density is calculated as 𝛿𝜌 = −𝜌̊ tr 𝝐. Knowing that det
𝑟
𝐅𝜖 = 1,

e can write

𝛿
𝑟
𝐽 = 𝑑

𝑑𝜖
|

|

|𝜖=0
det

𝑟
𝐅𝜖 =

𝑟
𝐅
−1
𝜖
|

|

|𝜖=0
∶𝛿

𝑟
𝐅 = 𝐈∶𝛿

𝑟
𝐅 = tr 𝛿

𝑟
𝐅 = tr

𝑟
U = tr 𝑟𝝐 = 0 , (5.5)

i.e., both the remodeling displacement and strain are traceless. The material metric 𝐆 =
𝑟
𝐅∗𝐆̊ =

𝑟
𝐅⋆𝐆̊

𝑟
𝐅 is linearized as follows.

𝛿𝐆 = 𝑑
𝑑𝜖

|

|

|𝜖=0
𝐆𝜖 = 𝛿

𝑟
𝐅
⋆
𝐆̊

𝑟
𝐅𝜖

|

|

|𝜖=0
+

𝑟
𝐅
⋆
𝜖
|

|

|𝜖=0
𝐆̊ 𝛿

𝑟
𝐅 = 𝛿

𝑟
𝐅
⋆
𝐆̊ 𝐈 + 𝐈 𝐆̊ 𝛿

𝑟
𝐅 =

𝑟
U
⋆
𝐆̊ + 𝐆̊

𝑟
U = 2 𝑟𝜺 . (5.6)

.2. Linearized stress

For linearization purposes, the convected form of the balance of linear momentum (3.11) is more convenient as it is entirely
ritten with respect to the reference configuration. In other words, as the parameter 𝜖 varies, all the terms lie in a fixed tangent

pace 𝑇𝑋. Recall that for an isotropic solid 𝑊 = 𝑊̂ (𝑋,𝐂♭,𝐆). We first compute the variation of the convected stress tensor as

𝛿𝜮 = 𝑑
𝑑𝜖

[

2
𝐽
𝜕𝑊̂
𝜕𝐂♭

]

|

|

|𝜖=0
= −𝛿𝐽

( 1
𝐽
𝜮
)

|

|

|

|𝜖=0
+
(

2
𝐽

𝜕2𝑊̂
𝜕𝐂♭𝜕𝐂♭

)

|

|

|𝜖=0
∶𝛿𝐂♭ +

(

2
𝐽

𝜕2𝑊̂
𝜕𝐂♭𝜕𝐆

)

|

|

|𝜖=0
∶𝛿𝐆

= −(tr 𝝐)𝜮̊ +
(

2
𝐽

𝜕2𝑊̂
𝜕𝐂♭𝜕𝐂♭

)

|

|

|

|

|𝜑=𝜄 ,
𝑟
𝐅=𝐈

∶𝛿𝐂♭ +
(

2
𝐽

𝜕2𝑊̂
𝜕𝐂♭𝜕𝐆

)

|

|

|𝜑=𝜄 ,
𝑟
𝐅=𝐈

∶(
𝑟
U⋆𝐆̊ + 𝐆̊

𝑟
U)

=
(

2
𝐽

𝜕2𝑊̂
𝜕𝐂♭𝜕𝐂♭

)

|

|

|

|

|𝜑=𝜄 ,
𝑟
𝐅=𝐈

∶𝛿𝐂♭ +
(

4
𝐽

𝜕2𝑊̂
𝜕𝐂♭𝜕𝐆

)

|

|

|𝜑=𝜄 ,
𝑟
𝐅=𝐈

∶ 𝑟𝜺 ,

(5.7)

here 𝜮̊ = 𝟎 was used. Let us define the following fourth-order material elasticity tensors

c ∶= 4𝜑̊∗

[

𝜕2𝑊̂
𝜕𝐂♭𝜕𝐂♭

]

𝜑=𝜄 ,
𝑟
𝐅=𝐈

, 𝑟c ∶= 4𝜑̊∗

[

𝜕2𝑊̂
𝜕𝐂♭𝜕𝐆

]

𝜑=𝜄 ,
𝑟
𝐅=𝐈

. (5.8)

hus

𝛿𝜮 = 𝜑̊∗ (c∶𝝐 + 𝑟c∶ 𝑟𝝐
)

= C∶𝜺 +
𝑟
C∶ 𝑟𝜺 , (5.9)

here
𝑟
C = 𝜑̊∗ 𝑟c, and C = 𝜑̊∗c. Material covariance of the energy function (2.22) implies that (Lu and Papadopoulos, 2000)

𝜕𝑊̂
𝜕𝐂♭

⋅ 𝐂♭ + 𝜕𝑊̂
𝜕𝐆

⋅𝐆 = 𝟎 , or in components , 𝜕𝑊̂
𝜕𝐶𝐴𝑀

𝐶𝑀𝐵 + 𝜕𝑊̂
𝜕𝐺𝐴𝑀

𝐺𝑀𝐵 = 0 . (5.10)

sing this relation and for a stress-free reference motion, one concludes that

𝜕2𝑊̂ + 𝜕2𝑊̂ = 𝟎 . (5.11)
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Thus,
𝑟
C = −C (Ozakin and Yavari, 2010), and hence

𝛿𝜮 = C∶𝜺 − C∶ 𝑟𝜺 = C∶ 𝑒𝜺 . (5.12)

As expected, the linearized stress explicitly depends on the linearized elastic strain.

5.3. Linearized balance of linear momentum

In remodeling problems, inertial forces can be ignored. The convected balance of linear momentum (3.11) in the absence of
inertial forces is linearized as

𝑑
𝑑𝜖

|

|

|𝜖=0

[

Div𝐂♭𝜖 𝜮𝜖 + 𝜑∗
𝑡,𝜖(𝜌𝜖𝐛𝜖)

]

= 𝟎 . (5.13)

The body force is linearized as
𝑑
𝑑𝜖

|

|

|𝜖=0

[

𝜑∗
𝑡,𝜖(𝜌𝜖𝐛𝜖)

]

= 𝜑̊∗(𝛿𝜌 𝐛̊) + 𝜑∗
𝑡,𝜖=0

[

𝜌̊𝐿(𝑑𝜑𝜖∕𝑑𝜖)𝐛𝜖
]

𝜖=0
= 𝜑̊∗(𝛿𝜌 𝐛̊) + 𝜑̊∗(𝜌̊[𝐮, 𝐛̊]

)

. (5.14)

The Christoffel symbol 𝛤 of the Levi-Civita connection of 𝐂♭ is linearized as follows
𝑑
𝑑𝜖

|

|

|𝜖=0

[

𝛤𝐴𝜖 𝐾𝐵

]

= 1
2
𝑑
𝑑𝜖

|

|

|𝜖=0

[

C−𝐴𝐿
𝜖

(

𝐶𝜖𝐿𝐵,𝐾 + 𝐶𝜖𝐾𝐿,𝐵 − 𝐶𝜖𝐾𝐵,𝐿
)]

= −1
2
C̊−𝐴𝐼𝛿C𝐼𝐽 C̊−𝐽𝐿

(

C̊𝐿𝐵,𝐾 + C̊𝐾𝐿,𝐵 − C̊𝐾𝐵,𝐿
)

+ 1
2
C̊−𝐴𝐿 (

𝛿C𝐿𝐵,𝐾 + 𝛿C𝐾𝐿,𝐵 − 𝛿C𝐾𝐵,𝐿
)

= F̊−𝐴𝑎 F̊𝑏𝐵 F̊𝑘𝐾
[

−2g𝑎𝑖𝜖𝑖𝑗𝛾𝑗 𝑘𝑏 + g𝑎𝑙
(

𝜖𝑙𝑏,𝑘 + 𝜖𝑘𝑙,𝑏 − 𝜖𝑘𝑏,𝑙
)]

= F̊−𝐴𝑎 F̊𝑏𝐵 F̊𝑘𝐾
[

g𝑎𝑙
(

𝜖𝑙𝑏|𝑘 + 𝜖𝑘𝑙|𝑏 − 𝜖𝑘𝑏|𝑙
)]

= F̊−𝐴𝑎 F̊𝑏𝐵 F̊𝑘𝐾 𝑢𝑎|𝑘𝑏 .

(5.15)

Hence, the divergence term is linearized as
𝑑
𝑑𝜖

[

Div𝐂♭𝜖 𝜮𝜖

]

𝜖=0
= Div𝐂̊♭ 𝛿𝜮 + 𝛴̊𝐾𝐵 𝑑

𝑑𝜖

[

𝛤𝐴𝜖 𝐾𝐵

]

𝜖=0
𝜕𝐴 + 𝛴̊𝐴𝐾 𝑑

𝑑𝜖

[

𝛤𝐵𝜖 𝐾𝐵

]

𝜖=0
𝜕𝐴 = Div𝐂̊♭

[

𝜑̊∗ (c∶ 𝑒𝝐
)]

= 𝜑̊∗ div
(

c∶ 𝑒𝝐
)

. (5.16)

Finally, the linearized balance of linear momentum reads

div
(

c∶ 𝑒𝝐
)

+ 𝜌̊ 𝛿𝐛 = 𝟎 , (5.17)

where 𝛿𝐛 = [𝐮, 𝐛̊] = ∇𝐠
𝐮𝐛̊ − ∇𝐠

𝐛̊
𝐮.

5.4. Linearized kinetic equation

The kinetic equation (3.18) is linearized as follows.

𝑑
𝑑𝜖

|

|

|

|

|𝜖=0

𝜕𝜙

𝜕
𝑟̇
𝐅𝜖

= 𝑑
𝑑𝜖

|

|

|𝜖=0

[

𝑞𝜖
𝑟
𝐅−⋆
𝜖

]

− 2 𝑑
𝑑𝜖

|

|

|𝜖=0

[

𝑟
𝐅−⋆
𝜖 𝐆𝜖

𝜕𝑊̂
𝜕𝐆𝜖

]

. (5.18)

ote that
𝑑
𝑑𝜖

|

|

|𝜖=0

[

𝑞𝜖
𝑟
𝐅−⋆
𝜖

]

= 𝛿𝑞 𝐈 − 𝑞̊
𝑟
U−⋆ , (5.19)

nd
𝑑
𝑑𝜖

|

|

|𝜖=0

[ 𝑟
𝐅−⋆
𝜖 𝐆𝜖

]

= 𝑑
𝑑𝜖

|

|

|𝜖=0

[

𝐆̊
𝑟
𝐅𝜖

]

= 𝐆̊
𝑟
U , 𝑑

𝑑𝜖
|

|

|𝜖=0

[

𝜕𝑊̂
𝜕𝐆𝜖

]

= 𝜕2𝑊̂
𝜕𝐆𝜕𝐂♭

∶𝛿𝐂♭ + 𝜕2𝑊̂
𝜕𝐆𝜕𝐆

∶𝛿𝐆 , (5.20)

here all the partial derivatives are evaluated at the initial configuration (𝜑,
𝑟
𝐅) = (𝜄, 𝐈). Thus

𝑑
𝑑𝜖

|

|

|𝜖=0

[

𝑟
𝐅−⋆
𝜖 𝐆𝜖

𝜕𝑊̂
𝜕𝐆𝜖

]

= 𝐆̊
𝑟
U 𝜕𝑊̂
𝜕𝐆

+ 𝐆̊⋅
[

𝜕2𝑊̂
𝜕𝐆𝜕𝐂♭

∶𝛿𝐂♭ + 𝜕2𝑊̂
𝜕𝐆𝜕𝐆

∶𝛿𝐆
]

= 𝑟𝜺 ⋅ 𝜕𝑊̂
𝜕𝐆

+ 𝐆̊⋅
[

− 𝜕2𝑊̂
𝜕𝐂♭𝜕𝐂♭

∶𝛿𝐂♭ + 𝜕2𝑊̂
𝜕𝐆𝜕𝐆

∶𝛿𝐆
]

= 𝑟𝜺 ⋅ 𝜕𝑊̂
𝜕𝐆

+ 𝐆̊⋅
[

−2 𝜕2𝑊̂
𝜕𝐂♭𝜕𝐂♭

∶𝜺 + 2 𝜕
2𝑊̂

𝜕𝐆𝜕𝐆
∶ 𝑟𝜺

]

= 𝑟𝜺 ⋅ 𝜕𝑊̂
𝜕𝐆

+ 1
2
𝐆̊⋅

[

−C∶𝜺 + G∶ 𝑟𝜺
]

,
(5.21)

where

G ∶= 4
[

𝜕2𝑊̂
𝜕𝐆𝜕𝐆

]

𝜑=𝜄 ,
𝑟
𝐅=𝐈

. (5.22)

aking derivative with respect to 𝐆 of both sides of (5.10) one obtains

𝜕2𝑊̂
𝜕𝐆𝜕𝐂♭

⋅ 𝐂♭ + 𝜕2𝑊̂
𝜕𝐆𝜕𝐆

⋅𝐆 + 𝜕𝑊̂
𝜕𝐆

⊗ 𝐈 = 𝟎 . (5.23)

valuating this at the initial configuration one obtains (recall that 𝐂̊♭ = 𝐆̊)

𝜕𝑊̂ ⊗ 𝐈 +
[

− 𝜕2𝑊̂ + 𝜕2𝑊̂
]

⋅𝐆̊ = 𝟎 , (5.24)
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where (5.11) was used. Thus

𝜕𝑊̂
𝜕𝐆

⋅ 𝑟𝜺 = 1
4
𝑟𝜺∶(C − G)⋅𝐆̊ . (5.25)

Using the minor and major symmetries of C and G, the above relationship is equivalent to

𝑟𝜺 ⋅ 𝜕𝑊̂
𝜕𝐆

= 1
4
𝐆̊⋅(C − G)∶ 𝑟𝜺 . (5.26)

hus
𝑑
𝑑𝜖

|

|

|𝜖=0

[

𝑟
𝐅−⋆
𝜖 𝐆𝜖

𝜕𝑊̂
𝜕𝐆𝜖

]

= 1
4
𝐆̊⋅(C − G)∶ 𝑟𝜺 + 1

2
𝐆̊⋅

[

−C∶𝜺 + G∶ 𝑟𝜺
]

= 1
4
𝐆̊⋅

[

−2C∶𝜺 + (C + G)∶ 𝑟𝜺
]

. (5.27)

ence, the right-hand side of (5.18) is written as

𝛿𝑞 𝐈 − 𝑞̊
𝑟
U−⋆ + 𝐆̊⋅C∶𝜺 − 1

2
𝐆̊⋅(G + C)∶ 𝑟𝜺 . (5.28)

The initial Lagrange multipliers 𝑞̊ are calculated as follows. The remodeling equation (3.18) at the initial configuration is written
as

𝜕𝜙

𝜕
𝑟̇
𝐅

|

|

|

|

|

𝑟̇
𝐅=𝟎

= 𝑞̊ 𝐈 − 2𝐆̊ 𝜕𝑊
𝜕𝐆

. (5.29)

t is assumed that 𝑩̊𝑟 = 𝟎, and hence

𝑞̊ = 2
3
𝜕𝑊
𝜕𝐆

∶𝐆̊ . (5.30)

sing (5.24) one obtains

𝜕𝑊̂
𝜕𝐆

∶𝐆̊ = 1
4
𝐆̊∶C∶𝐆̊ − 1

4
𝐆̊∶G∶𝐆̊ . (5.31)

Thus

𝑞̊ = 1
6
𝐆̊∶(C − G)∶𝐆̊ . (5.32)

Recall that 𝜙 = 𝜙̂(𝑋,𝐂♭,
𝑟
𝐅,

𝑟̇
𝐅,𝐆), and hence

𝑑
𝑑𝜖

|

|

|

|

|𝜖=0

𝜕𝜙

𝜕
𝑟̇
𝐅𝜖

=
𝜕2𝜙̂

𝜕
𝑟̇
𝐅𝜕𝐂♭

∶𝛿𝐂♭ + 𝜕2𝜙̂

𝜕
𝑟̇
𝐅𝜕

𝑟
𝐅
∶𝛿

𝑟
𝐅 +

𝜕2𝜙̂

𝜕
𝑟̇
𝐅𝜕

𝑟̇
𝐅
∶𝛿

𝑟̇
𝐅 +

𝜕2𝜙̂

𝜕
𝑟̇
𝐅𝜕𝐆

∶𝛿𝐆 = 2
𝜕2𝜙̂

𝜕
𝑟̇
𝐅𝜕𝐂♭

∶𝜺 + 𝜕2𝜙̂

𝜕
𝑟̇
𝐅𝜕

𝑟
𝐅
∶

𝑟
U +

𝜕2𝜙̂

𝜕
𝑟̇
𝐅𝜕

𝑟̇
𝐅
∶

𝑟̇
U + 2

𝜕2𝜙̂

𝜕
𝑟̇
𝐅𝜕𝐆

∶ 𝑟𝜺 , (5.33)

where all the partial derivatives are evaluated at the initial configuration corresponding to (𝜑,
𝑟
𝐅) = (𝜄, 𝐈). Let us define

Â ∶=
𝜕2𝜙

𝜕
𝑟̇
𝐅𝜕

𝑟̇
𝐅
, B̂ ∶=

𝜕2𝜙

𝜕
𝑟̇
𝐅𝜕

𝑟
𝐅
, Ĉ ∶=

𝜕2𝜙

𝜕
𝑟̇
𝐅𝜕𝐂♭

, D̂ ∶=
𝜕2𝜙

𝜕
𝑟̇
𝐅𝜕𝐆

, (5.34)

valuated at the initial configuration. Hence

𝛿
𝜕𝜙

𝜕
𝑟̇
𝐅

= 2Ĉ∶𝜺 + B̂∶
𝑟
U + Â∶

𝑟̇
U + 2D̂∶ 𝑟𝜺 . (5.35)

he dissipation potential is materially covariant (for anisotropic solids, structural tensors need to be included for material covariance
o hold), and hence

𝜕𝜙̂
𝜕𝐂♭

⋅ 𝐂♭ + 𝜕𝜙̂

𝜕
𝑟
𝐅

⋅
𝑟
𝐅 +

𝜕𝜙̂

𝜕
𝑟̇
𝐅

⋅
𝑟̇
𝐅 +

𝜕𝜙̂
𝜕𝐆

⋅𝐆 = 𝟎 . (5.36)

hus
𝜕2𝜙̂

𝜕
𝑟̇
𝐅𝜕𝐂♭

⋅ 𝐂♭ + 𝜕2𝜙̂

𝜕
𝑟̇
𝐅𝜕

𝑟
𝐅
⋅
𝑟
𝐅 +

𝜕2𝜙̂

𝜕
𝑟̇
𝐅𝜕

𝑟̇
𝐅
⋅
𝑟̇
𝐅 +

𝜕𝜙̂

𝜕
𝑟̇
𝐅
⊗ 𝐈 + 𝜕2𝜙̂

𝜕
𝑟̇
𝐅𝜕𝐆

⋅𝐆 = 𝟎 . (5.37)

ith respect to the initial configuration (𝐂♭,
𝑟
𝐅,

𝑟̇
𝐅,𝐆) = (𝐆̊, 𝐈, 𝟎, 𝐆̊), this is simplified to read

𝜕2𝜙̂

𝜕
𝑟̇
𝐅𝜕𝐂♭

⋅ 𝐆̊ +
𝜕2𝜙̂

𝜕
𝑟̇
𝐅𝜕

𝑟
𝐅
+

𝜕2𝜙̂

𝜕
𝑟̇
𝐅𝜕𝐆

⋅ 𝐆̊ = 𝟎 , (5.38)

.e., B̂ = −Ĉ ⋅ 𝐆̊ − D̂ ⋅ 𝐆̊. Thus

𝛿
𝜕𝜙

𝜕
𝑟̇
𝐅

= Â∶
𝑟̇
U + 2Ĉ∶𝜺 + (D̂ − Ĉ)∶ 𝑟𝜺 . (5.39)

herefore, the linearized remodeling equation is written as

Â∶
𝑟̇
U + 2Ĉ∶𝜺 + (D̂ − Ĉ)∶ 𝑟𝜺 = 𝛿𝑞 𝐈 − 1 [

𝐆̊∶(C − G)∶𝐆̊
] 𝑟
U−⋆ + 𝐆̊⋅C∶𝜺 − 1 𝐆̊⋅(G + C)∶ 𝑟𝜺 . (5.40)
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T

I
b

This can be written in terms of
𝑟
U as

Â∶
𝑟̇
U +

[

(D̂ − Ĉ) + 1
2
𝐆̊⋅(G + C)

]

∶𝐆̊
𝑟
U + 1

6

[

𝐆̊∶(C − G)∶𝐆̊
] 𝑟
U−⋆ + (2Ĉ − 𝐆̊⋅C)∶𝜺 = 𝛿𝑞 𝐈 . (5.41)

he kinetic equation is more compactly written as

Â∶
𝑟̇
U + Ĥ∶

𝑟
U + K̂∶

𝑟
U−⋆ + L̂∶𝜺 = 𝛿𝑞 𝐈 . (5.42)

t is seen even in the linear approximation, the kinetic equation has a contribution from elastic deformations. 𝛿𝑞 can be eliminated
y taking the trace of both sides and hence

Â∶
𝑟̇
U + Ĥ∶

𝑟
U + K̂∶

𝑟
U−⋆ + L̂∶𝜺 − 1

3
tr
[

Â∶
𝑟̇
U + Ĥ∶

𝑟
U + K̂∶

𝑟
U−⋆ + L̂∶𝜺

]

𝐈 = 𝟎 . (5.43)

6. Conclusions

In this paper, we formulated the nonlinear mechanics of material remodeling as a special class of anelastic processes with an
internal constraint, namely volume and mass-conserving material evolutions. Remodeling alters the local stress-free configuration
of the body, and the time dependence of the energy function is through a remodeling tensor

𝑟
𝐅. The remodeling tensor changes the

material metric of the body and makes the structural tensors time-dependent. However, the symmetry of the material is preserved
in the sense that the material symmetry groups at different times are related to that of the initial body in the form of conjugacy
through

𝑟
𝐅. We specifically studied remodeling for isotropic, transversely isotropic, orthotropic, and monoclinic solids. We derived

the governing equations of a remodeling body variationally using the Lagrange–d’Alembert principle within a two-potential setting.
An energy function is assumed that depends on strain, material metric, and some time-dependent structural tensors. The dissipation
potential, in addition to those fields, depends on the rate of remodeling tensor as well. In addition to the energy function and
dissipation potential, we introduced a remodeling energy that quantifies the tendency of local material remodeling, e.g., fiber
reorientation, in response to the local strain (stress).

We derived an explicit remodeling equation for a general remodeling process for both isotropic and anisotropic solids. We also
considered general 𝑆𝑂(3)-remodeling and the special case of fiber reorientation when the body is reinforced with one or two families
of fibers. Our kinetic equation is a generalization of Menzel (2005)’s reorientation equation. In addition to the remodeling energy, the
elastic strain energy naturally contributes to the remodeling equation. In the case of one family of fibers, we showed that as long as
the dissipation potential does not have a term linear in the rate of fiber tangent vector, the principal directions of the right Cauchy–
Green strain are equilibrium points for the remodeling equation. We briefly discussed the first and second laws of thermodynamics
and the restrictions they impose on the dissipation potential. We studied three examples of remodeling in fiber-reinforced solids
under some finite (universal) deformations. Finally, the governing equations of the nonlinear theory were linearized with respect
to an initial stress-free configuration in order to derive a linearized theory of remodeling mechanics.

The numerical results for the three examples showed a wide variety of possible behaviors with the proposed remodeling
framework. For all the three examples, assuming an initially helical family of fibers in a solid cylinder, we observe that based
on the applied loading and the value of the remodeling energy parameter, the fibers can remodel to align along different directions.
In the first two examples involving finite extension of cylinders, the remodeling was found to be independent of the initial fiber
orientation or the radial coordinate. However, for the third example involving torsion, remodeling depends on both the initial
fiber orientation and the radial coordinate. The remodeling process was often found to be non-monotonic with the loading. Under
force-control loading, it showed an unstable transition between two finitely separated states. Moreover, it was observed that the
stress-deformation response evolves upon cyclic loading. While 𝑆𝑂(3)-remodeling does not induce residual stresses, it was shown
that the resulting stress state in the remodeled material under constant loading can be uniaxial or triaxial. There is no particular
preferred stress that was found in our analysis for both types of loading.

All of the above observations were explained through the competition between the action of internal strain energy function and
remodeling energy (governed by the motivation to provide the material extra stiffness or strength). The dissipation potential only
affects the time scale over which remodeling occurs. For a given material, a remodeling process dominated by strain energy, such
as when the material is subjected to large loading, aligns fibers in a direction that minimizes strain energy. On the other hand,
a remodeling process dominated by remodeling energy, such as when the material is under small loading, tends to align fibers in
the direction of maximum principal strain according to our constitutive choice. Observations of collagen fibers in biological tissues
remodeling themselves into a state of non-zero stress or helical orientation under uniaxial stretch have been widely reported in
the literature. However, previously, only empirical models were proposed to describe these observations. The energetic competition
proposed in this work provides a possible physical explanation for the experimental observations and a likely predictive model.

We close by pointing out that the proposed macroscopic remodeling framework involves three constitutive inputs: (i) the material
strain energy function, (ii) the dissipation potential, and (iii) a remodeling energy. For a given material of interest, e.g., a soft
tissue containing collagen fibers, calibration of a model based on this framework would critically require the knowledge of the
first and third inputs. Many experimental and analytical methods exist to characterize the strain energy function. The remodeling
energy would likely have to be characterized by fitting the model to structural-level non-homogeneous experimental observations
of remodeling in tissues.
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