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Abstract

For a given class of materials, universal deformations are those that can be maintained in
the absence of body forces by applying only boundary tractions. Universal deformations
play a crucial role in nonlinear elasticity. To date, their classification has been accomplished
for homogeneous isotropic solids following Ericksen’s seminal work, and homogeneous
anisotropic solids and inhomogeneous isotropic solids in our recent works. In this paper
we study universal deformations for inhomogeneous anisotropic solids defined as materials
whose energy function depends on position. We consider both compressible and incom-
pressible transversely isotropic, orthotropic, and monoclinic solids. We show that the uni-
versality constraints—the constraints that are dictated by the equilibrium equations and the
arbitrariness of the energy function—for inhomogeneous anisotropic solids include those
of inhomogeneous isotropic and homogeneous anisotropic solids. For compressible solids,
universal deformations are homogeneous and the material preferred directions are uniform.
For each of the three classes of anisotropic solids we find the corresponding universal in-
homogeneities—those inhomogeneities that are consistent with the universality constraints.
For incompressible anisotropic solids we find the universal inhomogeneities for each of the
six known families of universal deformations. This work provides a systematic approach to
study analytically functionally-graded fiber-reinforced elastic solids.
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1 Introduction

In elasticity, for a given class of materials, universal deformations are those deformations
that can be maintained in the absence of body forces by applying only boundary tractions
for an arbitrary energy function in that class.! They are particularly important in nonlinear
elasticity since they exist independently of a particular choice of energy function. Therefore,
they can be used experimentally to study material properties and analytically as a basis for
more complicated deformations or to gain insight into basic properties of materials. The his-
tory of a theory of universal deformations goes back to the seminal work of Ericksen who
showed that for homogeneous compressible isotropic solids, universal deformations are ho-
mogeneous [9]. From that original seed, grew a large body of work addressing the same
problems for materials that have constraints such as incompressibility, may be anisotropic,
may be inhomogenous, may be anelastic, or linear as shown in Fig. 1. The problem of find-
ing universal deformations in the presence of internal constraints is more difficult [32]. For
homogeneous incompressible isotropic solids, in a second seminal paper that was motivated
by the earlier works of Rivlin [29-31], Ericksen [8] found four families of universal de-
formations. He conjectured that a deformation with constant principal invariants has to be
homogeneous. This conjecture turned out to be incorrect [11], and motivated the discovery
of a fifth family of universal deformations [20, 34]. The six known families of universal
deformations are:

Family 0: Homogeneous deformations

Family 1: Bending, stretching, and shearing of a rectangular block

Family 2: Straightening, stretching, and shearing of a sector of a cylindrical shell

Family 3: Inflation, bending, torsion, extension, and shearing of a sector of an annular
wedge

e Family 4: Inflation/inversion of a sector of a spherical shell

e Family 5: Inflation, bending, extension, and azimuthal shearing of an annular wedge

We should emphasize that for incompressible isotropic solids Ericksen’s problem has
not been solved completely to this day; the case of deformations with constant principal
invariants is still an open problem. However, the conjecture is that there are no other possi-
ble families of universal deformations. In related works, there have been several studies of
universal deformations and universal steady-state temperature fields in nonlinear thermoe-
lasticity (see [6, 7, 26, 33], and references therein).

Based on Ericksen’s seminal work, we embarked a few years ago into what we now
refer to as the universal program: to generalize Ericken’s results to anisotropic and inho-
mogeneous materials for all hyperelastic materials, anelastic materials, and linear mate-
rials (see Fig. 1). Indeed, the analogue of universal deformations in linear elasticity are
universal displacements [18, 38, 45]. In [45], it was shown that universal displacements
explicitly depend on the symmetry class of the material; the larger the symmetry group is
the larger the corresponding space of universal displacements is. More recently, we stud-
ied universal inhomogeneities in anisotropic linear elasticity [43]. There have been re-
cent extensions of Ericksen’s analysis to anelasticity. Yavari and Goriely [41] proved that
in compressible anelasticity universal deformations must be covariantly homogeneous. In
the case of incompressible anelasticity, Goodbrake et al. [15] observed that a key feature
of the analysis is that the extra fields entering the analysis should follow the same sym-
metry as the universal deformations. They also showed that the six known families of

ISee Pucci et al. [27] for definitions of controllable, general, universal, and partial solutions in nonlinear
elasticity.
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ANELASTICITY | ------------ | NONLINEAR ELASTICITY| ------------ LINEAR ELASTICITY

[Yavari-Goriely 2016 [Yavari-Goodbrake-Goriely 2020
Goodbrake-Yavari-Goriely 2020] / \ Yavari-Goriely 2022]
HOMOGENEOUS W INHOMOGENEOUS W
COMPRESSIBLE INCOMPRESSIBLE COMPRESSIBLE INCOMPRESSIBLE
ISOTROPIC ANISOTROPIC ISOTROPIC ISOTROPIC ANISOTROPIC ISOTROPIC
[Ericksen 1954] [Yavari-Goriely 2021] [Ericksen 1955] [Yavari 2021] [this work] [Yavari 2021]

Fig. 1 The universal program: Finding all the universal deformations and displacements, together with the
associated universal material preferred directions, and universal inhomogeneities, for both compressible and
incompressible solids. These are the different cases considered so far with partial or complete solutions. Here,
nonlinear elasticity refers to hyperleasticity and the existence of a strain-energy density W is assumed that
can either be homogeneous or non-homogenous, isotropic or anisotropic

universal deformations are invariant under certain Lie subgroups of the special Euclidean
group.

Until recently, there was no systematic study of universal deformations in anisotropic
solids. There were early studies restricted to a subset of Family 1 deformations for two
cases of homogeneous anisotropy, and Family 3 deformations for an example of homo-
geneous anisotropy [10] (see also [1, 2]). However, many examples of universal deforma-
tions for anisotropic fiber-reinforced systems were known and widely used [3, 4, 16, 17,
19, 23, 28, 36]. Recently, we studied universal deformations and universal material pre-
ferred directions in homogeneous compressible and incompressible anisotropic solids [42].
More specifically, we considered compressible and incompressible transversely isotropic,
orthotropic, and monoclinic solids. We assumed that the material preferred directions can
vary from point to point. In the case of compressible solids we showed that universal defor-
mations are homogeneous and universal material preferred directions for the three classes of
anisotropic solids must be uniform. In the case of homogeneous incompressible transversely
isotropic, orthotropic, and monoclinic solids, we showed that in addition to the nine univer-
sality constraints for isotropic solids [8], there are extra 25, 74, and 152, respectively, extra
universality constraints that must be satisfied. For each known family of universal defor-
mations we obtained the universal material preferred directions assuming that they have the
symmetry of the corresponding universal deformations (that are encoded in the symmetries
of the right Cauchy-Green strain).’

Motivated by a result in [14], Yavari [40] extended the analysis of universal deforma-
tions to inhomogeneous isotropic solids (with position-dependent strain-energy density),
and showed that in addition to those of homogeneous isotropic solids there are some extra
universality constraints. It was shown that inhomogeneous compressible isotropic solids do
not admit universal deformations. In the case of inhomogeneous incompressible solids the
following results were obtained for each of the six known families of universal deformations.

2Unfortunately, there was a small mistake in calculating the universal material preferred directions for Family
5 deformations. The correct universal material preferred directions are given in (4.83), (5.17), and (6.31), for
transversely isotropic, orthotropic, and monoclinic solids, respectively.
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94 A. Yavari, A. Goriely

e For inhomogeneous incompressible isotropic solids it was incorrectly concluded that
Family O deformations are not universal. This is discussed in §4.1, and the corrected
statement is given in Footnote 4.

e Family 1 deformations are universal for any energy function of the form W =
W(X, I, I), where (X, Y, Z) is a Cartesian coordinate system with coordinate lines nor-
mal to the faces of an undeformed rectangular block. Note that with respect to cylindri-
cal coordinates (r, 8, z) in the deformed configuration, Family 1 deformations have the
form: (r,0, 2) = (/CI2X F Ca), CoY + Cs), &z — G, C3Y +Cg), where €, ..., Cg
are constants.

e Families 2, 3, and 4 deformations are universal for any energy function of the form
W = W(R, I}, I), where R is the radial coordinate in the undeformed configuration of a
cylindrical shell, an annular wedge, and a spherical shell, for Families 2, 3, and 4, respec-
tively.

e For inhomogeneous incompressible isotropic solids, Family 5 deformations are not uni-
versal.

The remaining problem to be solved to complete Ericksen’s program is to study elastic
materials that are inhomogenous, and anisotropic. Therefore, we study universal deforma-
tions for inhomogeneous anisotropic solids and generalize the results of [40, 42]. We con-
sider both compressible and incompressible transversely isotropic, orthotropic, and mono-
clinic solids. It is shown that the universality constraints—the constraints that are dictated by
the equilibrium equations and the arbitrariness of the energy function—for inhomogeneous
anisotropic solids include those of inhomogeneous isotropic and homogeneous anisotropic
solids as special cases. For compressible solids, universal deformations are homogeneous
and the material preferred directions are uniform. For each of the three classes of anisotropic
solids we find the corresponding universal inhomogeneities—those inhomogeneities (posi-
tion dependence of the energy function) that are compatible with the universality constraints.
For incompressible anisotropic solids we find the universal inhomogeneities for each of the
six known families of universal deformations.

This paper is organized as follows. In §2 we tersely review nonlinear anisotropic elastic-
ity. In §3, we consider inhomogeneous compressible transversely isotropic, orthotropic, and
monoclinic solids. The universal deformations, universal material preferred directions, and
universal inhomogeneities of inhomogeneous incompressible transversely isotropic solids
are analyzed for each of the six known families in §4. Similar analyses for inhomogeneous
incompressible orthotropic and inhomogeneous incompressible monoclinic solids are given
in §5 and §6, respectively. Conclusions are given in §7.

2 Nonlinear Anisotropic Elasticity

Kinematics Consider an elastic body ‘B. In nonlinear anelasticity the body is identified with
a Riemannian manifold (B, G) whose metric G is used in calculating the natural distances
between material points in the body. In nonlinear elasticity (B, G) is flat, and is a subman-
ifold of the Euclidean 3-space. A deformation of the body is a map ¢ : B — S, where § is
the Euclidean ambient space, and g is the Euclidean metric. The material velocity is defined
as

p(X, 1)

9
ViiBo TS, ViX)=VX.n=—""". @.1)
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The Universal Program of Nonlinear Hyperelasticity 95

The spatial velocity is defined as v =V o ¢!'. The deformation gradient—the tangent map
(or derivative) of p—is denoted by F = T'¢. With respect to local coordinate charts {x“} and
{X4} on $ and B, respectively, deformation gradient is defined as

a

dg
axA

FX): TxB— Tyx)S, FaX)= X). 2.2)

The deformation gradient is a linear map that maps vectors in the tangent space at a material
point in the reference configuration to vectors in the tangent space of the same material point
in the current configuration. The transpose of deformation gradient is defined as

F' T8 — TxB. (FV.V)g=(V.F'v)g. VVeTxB, veT,s, 2.3)

where ((, ) and ((, ))g are the inner products induced by the material and ambient space
metrics, respectively. F7 has the following components

(FTX))"s = 8 F? 5(X) GAE(X). (2.4)
The right Cauchy-Green deformation tensor is defined as
CX)=FX)'FX): TxB— TxB, CH=(F")*, F's. (2.5
The pulled-back metric is denoted by C” = ¢*g, and is defined as
(U, W) prg = (FU,FW))y, VU, W e Ix B, (2.6)

where b is the flat operator induced by the metric g. C* has components Cap = (g4 ©
©)F° 4 F’ . The left Cauchy-Green deformation tensor is defined as

B =¢*(g"), B =FH,(F "8, g". 2.7

The spatial analogues of C” and B* are denoted by ¢’ and b? (the Finger deformation tensor),
respectively, and are defined as

C=0.G),  cw=(F ) (F")"} Gas
b =¢.(G). b =FAF" 5 G

(2.8)

The second-order tensors C and b have the same principal invariants 7, I, and /5 that are
defined as [25]
I = trb = baa = bah 8ab

L= % (112 — trb2) = % (112 — bahbha) _ (112 —bped g 8ba) 2.9

N —

I; = detb.

Balance laws The referential forms of the mass conservation and the balance of linear and
angular momenta read

B
£=0, DivP+ poB=pyA, PFT =FPT, (2.10)
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96 A. Yavari, A. Goriely

where p is the material mass density, B is body force per unit referential volume, A is the
material acceleration, and P is the first Piola-Kirchhoff stress. The spatial forms of conser-
vation of mass and balance of linear and angular momenta read

Lyo=0, divo + pb=pa, ol =0, (2.11)

where p is the spatial mass density, o is the Cauchy stress, b =B o ¢!, a is the spatial
acceleration, and Ly p is the Lie derivative of the spatial mass density with respect to the
spatial velocity. P and o are related as Jo“» = P“4 F?,. The Jacobian of deformation J =
/T relates the material (d V') and spatial (dv) Riemannian volume forms as dv = JdV, and
is given by

detg

J =
detG

detF. (2.12)

Constitutive equations For an inhomogeneous anisotropic hyperelastic solid the energy
function (per unit undeformed volume) has the following functional form

W=WX,C,G,¢....L,). (2.13)

where W explicitly depends on X (inhomogeneity), and the structural tensors &;,i =
1, ..., n characterize the material symmetry group of the solid. Using structural tensors the
energy function becomes an isotropic function of its arguments. Instead of (2.13) one can
write the energy as a function of an integrity basis for the set of tensors {C’*, G, ¢4, ..., ¢, }.
Denoting the integrity basis by /;, j =1,...,m, one can write W = W(X, I}, ..., I,,). The
second Piola-Kirchhoff stress tensor has the following representation [5, 22, 44]

m a IJ

aW aw
S=23—Cb=22wj—b, W, =W;X, I, ..., L)) = —
j=1

, j=1,...,m. (2.14
a1 J m. (2.14)

aC

The relations between the second Piola-Kirchhoff stress, and the first Piola-Kirchhoff and
Cauchy stresses are: S48 = (F~1)4, P = J(F~ )4, (F1)B, 0.

Isotropic solids For an inhomogeneous isotropic solid, W = W(X, I, I, I3), where I}, I,
and /3 were defined in (2.9). From (2.14) one writes

S=2W,G* +2Wo (LC ' = LC ) +2W; ,C . (2.15)

The Cauchy stress has the following representation

o — 2 (W) 6% + (I Wa + I Wa)g® — I W) c™] (2.16)
VE

where ¢ = (F~D)M ,(F~YN,Gyn g“" g*". For an incompressible isotropic solid I3 = 1,
and hence
S=—pC ' +2W,G* —2W,C2,
2.17)
o=—pg+2W, b —2W,c ',
where p is the Lagrange multiplier associated with the incompressibility constraint J =
/I = 1. Equation (2.17), in components reads 0%® = —p g® + 2W, b* — 2W, c*.
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The Universal Program of Nonlinear Hyperelasticity 97

Transversely isotropic solids In a transversely isotropic solid at every point there is a sin-
gle material preferred direction, which is normal to the plane of isotropy at that point.
We assume that a unit vector N(X) identifies the material preferred direction at X € B.
The energy function for an inhomogeneous transversely isotropic solid has the form W =
WX, G, C’ A), where A = N ® N is a structural tensor [5, 21, 36]. The energy function W
depends on five independent invariants that are defined as

L=ttC=C4,, L=detCtrC!=det(C*p(CHPp, I =detC=det(C*p)
I,=N-C-N=N4N8C,p, Is=N-C>.N=NANBCg,C,.

(2.18)
The second Piola-Kirchhoff stress tensor has the following representation
R al; W
S=) 2w, —=, W, =W,X, I,....I5):=—, j=1,....,5, 2.19
;,acb i =WiX, I D=7 (2.19)
where
al al ol
—L -G, 2 -pC'-nC?, 2 =5nC,
ac® ac® aC’
ol ol (220)
4 5
— =N®N, — =NQ®(C-N C-N)®N.
o =NeN, o =N®(C-N+(C-N
Thus
S=2W,G*+2W, (L,C™' = LC?) +2W3 5C”!
+2Ws(N@N)+2Ws[N®(C-N)+ (C-N)®N] . 2.21)
The Cauchy stress has the representation [10, 12, 13]
2
Uah = — [Wlbah + (12W2 + ]3W3)gah — [3W2 Cah + W4 I’lal’lh + W5 Zah] . (222)
VT
where n = F*, N4, and
0 =n b n. +n®b*n,. (2.23)

In the case of an incompressible transversely isotropic solid (I3 =1), W = W(X, [, I,
14, I5), and hence

S=—pC ' +2W,G* +2W, (LC' = C?) +2W,(N®N)
+2Ws[N®(C-N)+(C-N)®N]. (2.24)

Similarly, the Cauchy stress has the following representation [10, 12, 13, 37]

Oah — _pgah + 2W1 bah _ 2W2 cah + 2W4 n¢ nh + 2W5 (na bhc nd 8ed + nb b I’ld gcd) .
(2.25)
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98 A. Yavari, A. Goriely

Orthotropic solids An orthotropic solid has reflection symmetry with respect to three mu-
tually perpendicular planes at every point. Let three G-orthonormal vectors N (X), N»(X),
and N3(X) specify the orthotropic axes at a point X in the reference configuration. The
three tensors A; = N; ® Ny, A, =N, ® N», and A; = N3 ® Nj are structural tensors. How-
ever, because A; + A, + A3 =1, only two of them are independent. The energy function
of an inhomogeneous orthotropic solid has the functional form W = W(X, G, C*, A}, A,)
[5, 21, 36]. It can be rewritten as a function of the following seven independent invari-
ants:

L =trC, L =detCurC™', I;=detC,
I,=N;-C-N,, Is=N;-C>-Ni, (2.26)
Is=N,-C-N,, I1=N,-C>-N,.

Thus

7

dl; aw

S=Zzwja—c-’3, Wi= Wi d, b= o =107, (2.27)
j=1 /

The second Piola-Kirchhoff stress tensor has the following representation

S=2W,G" +2W, (LC™' = L,C?) +2W; 5C'
+2Ws(Ny @ N +2W5 [N ® (C-Nj) + (C-Np) @ Ny
+2Ws (N2 @ No) +2W7 [N, @ (C-Ny) +(C-N2) @ Ny . (2.28)
Similarly, the Cauchy stress is written as [12, 13, 35, 37]

ot = (W™ 4 (I Wy + I Wa)g™ — I Wy

+ Wyn{ n}l’ + Ws (n‘l’ b n‘f 8ed + n}l’ b n‘l’ gcd)

+ Wen§ nb + Wy (n§ b n§ gea +n b™ nd gea) | . (2.29)

where n¢ = F*4N{*, and n§ = F°4N;'. In the case of an incompressible orthotropic solid
(13 = 1), W= W(X, 11 s 12, 14, 15, I(,, 17) ThllS, using (228), one has

S=—pC ' +2W,G" +2W, (LC™' - C?)
+2W4s(N; @ Nj) 4+ 2W5[N; ® (C-Ny) + (C-Nyj) @ Ny]
+2We (N2 @ N2) +2W7 [N2 ® (C-N2) +(C-N2) @ N7 ] (2.30)

Similarly, the Cauchy stress tensor is written as
ab __ ab ab ab a b ab a_b ab
0% =—pg” +2W b* = 2W, ¢ +2Wyn{n] +2WsL]” +2Wsnsn; +2W; 457, (2.31)
where €97 = n¢ b* n¢ g.q + n® b* nd geq, and €5° = n§ b* ng gea + n4 b nd geq.
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The Universal Program of Nonlinear Hyperelasticity 99

Monoclinic solids A monoclinic solid has three material preferred directions that are speci-
fied by three unit vectors {N;, N, N3} such that N; - N, # 0 and N3 is normal to the plane of
N; and N; [24]. The energy function of a monoclinic solid depends on nine invariants [37],

seven of which are identical to those of orthotropic solids (2.26). The two extra invariants
are

Is=4gN;-C-Ny, ILy=g4%, (2.32)
where g = N - N». Note that
alg g 319
— =N N+ N, ®Ny), —=0. 2.33
30 2( 1 ®N2 +Na ®Nyp) 5 (2.33)

For orthotropic solids the second Piola-Kirchhoff stress has the following representation

S=2W,G*+2W, (LC' = LC?) +2W; 5C™!
+2Ws(Ni @ N +2W5[N; ® (C-Nj) 4+ (C-Np) @ Ny
+2Ws (N2 @ No) +2W7 [N, @ (C-Ny) + (C-No) @ Ny |

+gWs (NN, + N2 ® Ny (2.34)
where W; = W; (X, I}, ..., Iy),i =1, ..., 8. Similarly, the Cauchy stress can be written as
o =2 (Wb + (L Wy + I Wa)g™ — I Wy c™
VI

+ W4 I’lclz n[; + W5 (l’l‘f bbv ncli 8ed + 7’1117 b* I’Zf gcd)
+ Wen§ ng + W, (ng pPe n‘zl 8ed + ng b n‘21 gcd)
+ gWs (n{ n5 +n%nf) ] . (2.35)
In the case of incompressible monoclinic solids (I3 = 1), W = W(X, I, I, 14, Is, Is, I7,
187 [9) Thus
S=—pC ' 4+2W, G +2W, (LC' —=C™?)
+2W,(N; ® Np) +2W5 [N; ® (C-Ny) + (C-Np) ® Ny
+2Ws (N2 @ N2) +2W7 [N, ® (C-Ny) + (C - N2) ® N |
+gWe (N1 ®N2 + N2 @ Nyp) . (2.36)

Similarly, the Cauchy stress tensor is written as

0 = —p g +2W, b =21 Wy P+ 2 Wy n nf +2Ws €50 +2We n§ nb +2W5 €57 + Wy €57,

(2.37)

ab __ a b b _a
where £5” = g (n{ n5 +n}n3).
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3 Compressible Inhomogeneous Anisotropic Solids

3.1 Transversely Isotropic Solids

We first consider an inhomogeneous body made of compressible transversely isotropic
solids. We do not specify the material preferred direction N(X) a priori. In the absence of
body forces, the equilibrium equations in Cartesian coordinates read o%? ;, = 0. Substituting
(2.22) into the equilibrium equations one obtains [42]

_3
— I, P Ly [W b% + (L Wy + I W3)8Y — I Wo " + Wyn“n® + Ws ¢

_1
+25 7 [(12,1; Wa + L Way + I Wa + I3 W3,)8% + Wy 6% 4 + W, , b

— 13,}, W2 Cab — 13 WZ,b Cah — 13 W2 Cab‘b

+ W4,h na nb + W4 f’la’}; nb + W4 na nb,]/, + W5’b Zab + W5 Zab,b] = O .

3.1

For universal deformations the equilibrium equations hold for an arbitrary energy function
W. Knowing that W is an arbitrary function of its arguments, the coefficient of Wy, W,, W3,
W3, and Ws must vanish separately. Thus [42]

W
W, :
Ws -
Wy
Ws -

X
5Ly8 — L™, =0,
L, =0,

(n“n"), =0,

¢, =0.

The above constraints simplify (3.1) to read

bYWy + (1, 8% — I3 ¢*)YWay, + 18" Way +nnb Wy p, + €42 Ws, =0.

Note that I3, =0 from (3.2); and

Wip=F DY Wia+ Wi Ly +Woly+ Wil + Wislsy,

Wap=(F ) Waa+Winlip+ War o+ Wag Ly + Was Is

Wip=(F Y% Wsa+WisTip+ Was b+ Waa Ly + Was Is

Wap=F D Waa+Wialip+Waa o+ Waa Loy + Was Is

Wsp=(F ) Ws g + Wis Iip + Was oy + Was Iy + Wss Is

where

W, .
=, Wy=——— i<
9XA L0l

Wi a

2w )
<J,

(3.2)

(3.3)

(3.4)

(3.5)

Notice that the first term on the right-hand side of each equation in (3.4) vanishes for homo-
geneous solids [42]. Substituting the above relations into (3.3) the coefficients of W;3 and
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The Universal Program of Nonlinear Hyperelasticity 101

W3 read
W13Z I3I|,h8ab=0,
Wy I8 =0. (3.6)

Thus, I, , = I, = 0. Substituting these into (3.4) and using (3.3) the coefficients of Wi,
and W35 read

Wiy: Ll,8° =0,
Wis: L1586 =0. (3.7)

Hence, 14, = Is, = 0. Therefore, we have the following universality constraints

Iy, I, and I3 are constant, 3.8)
by =c", =0, (3.9)
14, and I5 are constant, (3.10)
(nn?),=107%,=0. (3.11)

Note that (3.8) and (3.9) are the universality constraints for isotropic solids [9, 41] and
imply that F¢, 3 = 0, i.e., universal deformations are homogeneous. In addition, since
Iy = I a(F~H)4, =0, we have I, 4 = 0. Similarly, I5 4 = 0. The constraints (3.10) and
(3.11) imply that N is a constant unit vector [42].

For inhomogeneous solids one has the following extra five sets of universality constraints:

b (F~H)", Wia=0,

(L8 — ™) (F)*, Wy =0,
LS (F )4, Wi, =0, (3.12)

n“nP(F~)4 Wyx =0,

CPFYA Ws 4 =0.

The first three constraints in (3.12) are identical to those of isotropic solids [40], and imply
that

Wia=Woy=W;,=0, A=123. (3.13)

The constraint (3.12), implies that n®(F~1)4, W, 4 = Wy 4 N4 = 0. As N is a constant unit
vector we can choose the Cartesian coordinates (X', X2, X?) in the reference configuration
such that

0

== (3.14)

i.e., N4 = §{. Here we have used the notation dy: to denote the unit (tangent) vector along
the ith Cartesian direction as is customary in differential geometry. With this choice of
coordinates the constraint W, 4 N4 = 0 reads

oW,

= 3.15)
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102 A. Yavari, A. Goriely

Note that n = Fy N4 = F9, 8 = F4,.
Equation (3.12)5 is equivalent to

(F Y2 P (F )", Ws =0, B=1,2,3. (3.16)
Using (2.23) the above constraints can be rewritten as
(N*CPp NP+ NP CAp NPYWs 4 =0, B=1,2,3. (3.17)
Knowing that N4 = (Sf, this last expression can be rewritten as
CByWs +88C* Ws4=0, B=1,2,3. (3.18)

For B = 2, it implies that C?; W5 ; = 0, which must hold for arbitrary homogeneous defor-
mations, i.e., for arbitrary constant C 2,. Thus, Ws.1 = 0. Now the constraint for B = 3 is
trivially satisfied. For B =1, C?; W5, + C3| W53 = 0, which must be satisfied for arbitrary
constants C2;, and C?|. Therefore, W5, = W53 = 0. Thus, the constraint (3.12)5 implies
that W5 4 = 0. In summary, we have the following constraints

Wia=Wosa=Wsa=Wss=0, A=123 & Wi =0. (3.19)

This implies that

ow ow oW
X = fiX), X2 = LX, L), X3 = HX L), (3.20)
for some scalar functions f,. Note that % = % Since f; does not depend on I, one has
LX) = (XX, L)+ H(X). (3.21)
Similarly, % = % implies that
X 1) = f(X3, X, L)+ f35X). (3.22)
From (3.20);, one writes
Xl
WX, = [ AKX X2 X)dX +h(X?, X, 1), (3.23)
Xl

0

where X(l) is some fixed value of X!, i is some scalar function, and W(X, I;) and
h(X?, X3, I) are short for W(X, I,, I, I3, I, Is) and h(X?, X3, I}, I, I, I, I5), respec-
tively. Taking partial derivative with respect to X2 of both sides one obtains

AW X af(x!, X2, x3 (X2, X3, I,
or fl( s s )dX1+ ( s s )
0x2~ Ju aX2 IX?2

’

x! 1 yv2 y3 2 yv3
aHL(X*, X*, X°, L oh(X=, X°, I;
=/ f2( 4)dxl+¥’
X aX! X2

0
In(X?, X3, I;)

= A XX L)~ X XX L)+

(3.24)
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From (3.24) and (3.20), one concludes that

ah(Xza X35 It)
— = &Ko X2 X% 1. (3.25)
Thus
X (X2, X3, 1) X ,
— T X = H(Xy, X2 X3, 1)dX?, (3.26)
IS G
where X(z) is some fixed value of X2. Hence
X2
XA X3 L) =h(X5, X3 I+ | Xy, X3 X3, L)dX?. (3.27)
X2

0
Using the above relation in (3.23), one writes

X! X2
WX, I)=hX5, X, I+ | AL X2 XdX' + | f(XG, X2, X0, 1)d X
X X3

(3.28)
Taking partial derivative with respect to X* of the above relation one obtains

AW Oh(X3, X 1) X af(XY, X2, X% 1 X af(xs, X2, X3, 1) ’
=0t S22 axt + dx?,
X3 ax3 X! ax3 X ax?

0

X2, XA T) f’” afs(X', X%, X3, 1) Xm+/’(2 AL XA X L)
X, X,

X3 | ax! 2 X2 ’
0 0
ah(Xza X35 Il)
= AL X2, X7 L) — f5(Xg. X3, X7, 1)
(3.29)
Thus using (3.20)3 one concludes that
8h(X§, X3,I,') 1 2 3
ROl P B X3 X ). (3.30)
X3
Hence
x3 2 y3 x3
oh(Xg, X°, I)
/ —rdx’ :/ H(Xo, X3, X3 1pd X3, (3.31)
¥ o 0X %
where Xj is some fixed value of X*. Thus
X3
h(XG, X, 1) =h(X3, X0, 1) + | . f5(Xg, X5, X, L)d X (3.32)
X3
Substituting the above relation into (3.28) one obtains
x! X2
WX, ) =h(Xg, Xg. I+ |~ AXL X2 X dX 4+ | fo(X, X2, XP, 1) dX?
X} x2

0 0
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X3
+ f(X5, X2 X3, L)dX? . (3.33)
5
Substituting (3.21) and (3.22) into the above relation one finds that W(X, I;) = W(X) +
W(I;)+W(X?, X3, ). Note that the term W(X) is mechanically inconsequential, and hence
we have proved that the only universal deformations are homogeneous and the only possi-
ble dependence on the position is through /4 and in directions normal to a constant vec-
tor N:

Proposition 3.1 For compressible nonlinear transversely isotropic solids, universal defor-
mations are homogeneous, the universal material preferred direction is at all points a con-
stant unit vector N, and the universal inhomogeneity has the following form

WX, I, b, Iy, 1, 15) = WL, b, I, I, Is) + WX, X2, L), (3.34)
where the Cartesian X'-coordinate line is parallel to N.
3.2 Orthotropic Solids

For inhomogeneous compressible orthotropic solids there are two sets of universality con-
straints. The first set of constraints are identical to those of homogeneous compressible
orthotropic solids and read [42]:

1, I,, and I5 are constant, (3.35)
by =c?, =0, (3.36)
14, and I5 are constant, (3.37)
ninby,=104,=0, (3.38)
Is, and I7 are constant, (3.39)
(ngn5)p=1€5"»=0. (3.40)

These constraints imply again that universal deformations are homogeneous and the material
preferred directions are uniform. In the reference configuration we choose the Cartesian
coordinates (X', X2, X3) such that

le%, sz%, N3:%. (3.41)
The second set of universality constraints are:
b (F~), Wia=0,
(I 8 — 1 Cab) (F YA, Wy =0,
L8 (F)*, Ws4=0,
nY(F~")Y Wya =0, (3.42)

P (F A Ws 4 =0,
nS(F~ YA, W4 =0,
PFHA, Wy 4 =0.
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The first three constraints are identical to those of isotropic solids [40], and imply that
Wia =Wy 4= W; 4 =0. Similarly to the universality constraints of transversely isotropic
solids, (3.42), and (3.42)¢ imply that

oWy, W, oWs . W
axA~l T ax! XA 2 T 9x? ©4)
The universality constraints (3.42)s and (3.42); imply that
Wsa=Wia=0, A=1273. (3.44)
This means that
ow ow ow
X1 = fiX, Ig), relu LX 1), %3 = (X, 1y, Is) . (3.45)
Note that
01X Te) (X, 1y)  3fi(X.Te) _ 3fs(X, Ly, Is) 02X, Ly) _ f3(X, Ly, I6)
ax2  axt ax3 ax! ' ax3 ax2
(3.46)
Thus
[iX Ie) = fiIX!, X2, 1) + f1(X),
LX) = H(X* X, L)+ f(X). (3.47)
Using (3.45);, one writes
Xl
WX. )= | AKX X I)dX +h(X*, X, ), (3.48)
X]

0

where & is some scalar function, and X, (') is some fixed value of X'. Taking partial derivative
with respect to X2 of both sides one obtains

ow (X aax!, X% X3 I o, 9h(X2, X3, 1)
V5, — dX + — avo
X2 Jx ax2 9X2

x! 1 yv2 v3 2 v3
(X', X°, X°, L oh(X=, X°, I;
—_/ fa( 4)d)(1+¥’
X

! ox! 0x?
on(X?, X3, I,
SYACUE SR AR S CUATILLCE. KL P
From (3.49) and (3.45), one concludes that
3]’1(X2, X3=Ii) 1 2 3
—axz - H(Xg, X7, X7, L) (3.50)
Thus
x2 2 y3 x2
oh(X=, X°, I;
/ (—2)de: fHxh x2 X3 1)dx?, 3.51)
X(Z) 8X X2

0
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where X2 is some fixed value of X2. Hence

XZ
WX X3 L) =h(X3, X2 )+ | fHXg, X2 X3, L)dX? . (3.52)
X5
Using the above relation in (3.48), one has
x! X2
WX, I)=h(X5. X, I) + AXL X X0 T)dX + H(X, X2, X7, Id X
1 2

X X

0 0

(3.53)

Taking partial derivative with respect to X of the above relation one obtains

’

AW ah(X2, X3, I, X afx!, X2, X3, 1 X2 oh(Xh X2 X3, 1
_Oh( ) / f1( 6)dX'+/ 12 ( 4)dX2
X X

ax3 X3 X3 2 X3

1
0

(X3, X3, 1) /X‘ WXL XL X )
o X3 X, X!

X2 1 yv2 v3
f3(X,, X=, X°, 14, [
+/ f3( 4 é)dXz
X

2 X2 ’
0
Oh(X3, X3, 1)
=—— 5 T HAXLX X0 le) = (X, X5, X M o). 3.54)

Thus using (3.45)3 one concludes that

an(X32, X3, 1)
e = A X5 X L) 3.55)
Hence
CORXL XL s (X s s 3
/ — e dX’ = f(X, X5, X2, I, I)d X?, (3.56)
X?, 00X Xa

where Xg is some fixed value of X>. Thus

X3
WX X2 1) =h(X3. X0, 1)+ | fX0 X3, X L Iy d X (3.57)
X%

0
Using the above relation in (3.53), one obtains

x! x2
WX, L) = h(X3, X5, 1) + AKX XA X T dX! + Xy, X2 X3 1) dX?
X§ X5
x3
+ | (X, X5, X2 Ly, Ie)d X (3.58)
x3
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Substituting (3.47) into (3.58) one finds

x! _ X2
WX L=WX)+ W)+ | AXL X I)dX'+ | AKX, 1)dX?
x} X3
X3
+ f(Xe, X2, X3 1, I dXP (3.59)
X3

Noting that the term W(X) is mechanically inconsequential, we have proved the following
result.

Proposition 3.2 For compressible nonlinear orthotropic solids universal deformations are
homogeneous, the universal material preferred directions are everywhere the same three
mutually orthogonal constant unit vectors Ny, N, and N3, and the universal inhomogeneity
has the following form

WX, I, L, Iy, 1y, Is, 1o, ) = Wy, b, Iy, I, Is, I, 1)

+ WX, L, I+ WX, X2, 1)+ WX, X2, ),
(3.60)
where the Cartesian coordinate lines are the orthotropy directions.

While the form of this strain-energy density seems involved, it can be written explicitly
in terms of the Cartesian components of C as

W(X, C) = W(C) + W(X>, Ci1, C)+ WX, X3, Cr) + W(X', X3, C). (3.61)
3.3 Monoclinic Solids

Note that orthogonality of the material preferred directions was not assumed when deriving
the constraints (3.35)-(3.40), i.e., these universality constraints hold for monoclinic solids
as well. However, there are the following extra universality constraints [42]:

I, and Iy are constant, (3.62)

(nin%), =", =0. (3.63)

For compressible monoclinic solids the universality constraints (3.35)-(3.40) imply that uni-
versal deformations are homogeneous, and the three unit vectors Ny, N,, and N3 are con-
stant. This means that (3.62), (3.63) are trivially satisfied. Let us assume that the angle
between Nj and N, is 6 (0 < 6 < 7). In the reference configuration we choose a Cartesian
coordinate system (X', X2, X?) such that

el
Ny= —. 3.64
=543 (3.64)

In general, N; makes and angle o with the X,-axis, and thus

a a 0] ad
N; =cos« X1 + sinax X2’ N, = cos(x +9)ﬁ + sin(x —|—0)m. (3.65)
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The second set of universality constraints for inhomogeneous monoclinic solids include
those of orthotropic solids, i.e., Eqs. (3.42). There is one extra universality constrain that
reads:

P(F~Y4, Wea =0. (3.66)

This is equivalent to (NFN3* + N{*NP) W 4 = 0, and is trivially satisfied for B = 3. For
B =1,2itgives us

2cosa cos(a +6) Wy | + sin(Qa +60) Wy, =0,

(3.67)
sin(2a + 0)Ws | + 2sina sin(o + 6) Wg, =0.
These need to be satisfied for arbitrary «, and 6, and hence
Wg1=Ws2=0. (3.68)
The first three universality constraints in (3.42), and (3.42)5 and (3.42)7 imply that
Wia=Woa=Wsa=Ws5,=W;,=0, A=1,2,3. (3.69)
The constraint (3.42), implies that
oWy o We o 0We
mN{‘:cosaﬁ—i—smaﬁ=0, (3.70)
which must hold for any «, and hence
oW, oW,
e A 3.71
aX!  9x? ( )
The constraint (3.42)¢ implies that
oWs 4 o We
8XAN 0s(a+9)—+s1n( +9)m =0. (3.72)
This needs to hold for any 0 < 6 < %, and hence
oWg W
-2 =_=0. 3.73
aXx! 0X? ( )
From Egs. (3.68), (3.69), (3.71), and (3.73) one has
aW—f(XI) aW—f(XI) aW—f(XIIII) (3.74)
X1_1395 8X2_2 s 49), 8X3_3 s 14, 165 L85 19) - .
Using (3.74);, one can write
XI
WX = AKX XX L)dX' +h(X*, X I). (3.75)
Xl

0
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Taking partial derivative with respect to X? of both sides one obtains

oW X af(X, X2 X3, ) L R, X3 1)

— = dx!
x> Jy aX2 ax2
x! 1 yv2 y3 2 y3
H(X, X*, X°, I oh(X=, X°, I;
:/ fa( : 9) ax' + ( : ),
An(X?, X3, I,
= H(X', X2, X7, 1) — fo(Xg, X2, X7, Io) + % : (3.76)
From (3.76) and (3.74), one concludes that
On(X2, X3, 1) L vr w3
—axz = Xy, X7, X7, ). (3.77)
Thus
X2
WX X L) =hX3 X2 1)+ | H(X, X2 X Ly, ) dX?. (3.78)
X3
Using the above relation in (3.75), one writes
X! x2
WX, I)=hX5, X, I+ | AL XX I)dX + | f(Xg, X2, X, Io)d X
X X3
(3.79)

Taking partial derivative with respect to X3 of the above relation one obtains

’

oW on(X2, X3 1) (X AAX, XL X0y (X af(XL XA X3 ),
—_— = dx + dX
X3 X3 el ax3 X2 X3

(X3 X3, 1) f"‘ WX X2 X Lo Iy Iy)

- aX3 X, ax!

X2 1 v2 v3
0f3(X,, X, X°, 14, Ig, I3, I
/ 3(X, 4689)dX2
X

2 0X? ’
0
ah(X27X3a Il) 1 2 3 1 2 3
T x5 + A XX s Ts, Iy, 1o) — f3(Xo, Xo, X7, Iy, 1o, Is, 1o) -
(3.80)
Thus using (3.74); one concludes that
(X2, X3 1) Uor s
T=f3(X0’X0»X‘,I4a16Js,19)- (3.81)
Hence
X3
h(Xg. X2 1) =h(Xg. Xg. I+ | (X0, X5, X Uu, I, Is. To)d X°. (3.82)
X3

0
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Table 1 Universal inhomogeneities for compressible transversely isotropic, orthotropic, and monoclinic
solids

Symmetry Energy function Universal energy function

class

Transversely W(X', X2, X3, 11, I, I3, I4, I5) W, L, I3, Iy, Is) + W(X2, X3, Iy)
isotropic

Orthotropic ~ W(X ', X2, X3, Iy, I, I3, I4. Is. I I7) Wy, . I3, 14 15, Ig. I7) + W(X3, Iy, Ig)

+WX2, X3, 1)+ WX, X3, Ig)

Monoclinic  W(X', X2, X3, 11, I, I3, Iy, Is, Is, I7, I3, Io) W1, I, I3, Iy, Is, I, I7. Ig, Io)
+W(X3, 1y, Is, I3, I9)

Using the above relation in (3.79), one obtains

x! X2
WX, I;) = (X}, Xg, 1) + AKX X IydX + H(X), X2 X3, Iy)dX?
1 2

X X5

0
x3

+ (XY, X2 X3 1, I, Is, Ig)d X .
3

X

(3.83)
Note that the second and third terms on the right-hand side are mechanically inconsequen-
tial, and hence, we have proved the following result.

Proposition 3.3 For compressible nonlinear monoclinic solids universal deformations are
homogeneous, the universal material preferred directions are everywhere the same three
constant unit vectors Ny, No, and N3, such that N3 is perpendicular to the plane of Ny and
Ny, and the universal inhomogeneity has the following form

WX, I, b, Iy, Iy, Is, Do, I, I3, 1) = Wy, b, Iy, I, Is, I, I, I, Io)

+ WX, L, I, Is, 1), (3.84)
where the Cartesian X?-coordinate line is along N3.

Table 1 summarizes our results for inhomogeneous compressible anisotropic solids.

4 Incompressible Inhomogeneous Transversely Isotropic Elastic Solids

For a body made of an incompressible transversely isotropic solid, the equilibrium equations
in the absence of body forces read:

Prg” =2 [Wib™ — Woc™ + Wan®n® + Ws ] . 4.1)
This is equivalent to exactness of the 1-form

5 = Gum [W]bmn _ Wz Cmn + W4 nmnn + W5 Zmn] " dxa — Sadx”, (42)
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where

o= [Wib; — Wacy + Wangn" + Ws ;]

=W, by —Waouch +Wynngn" + Ws, £ + W, b)), — Wachy + Wa(ngn™),
+ Wslh, . 4.3)

The exactness of & implies that d§ = 0 [39], or equivalently, &, = &|,, Where

Eap = Wil — Wl + Wa (ngn™ ) + Ws €51
+ Winbp — Wancpip + Wan (nan™)p + Ws €51
+ Wisbgin — Wap ciin + Wap (nan™)jn + Ws p €31
+ Wbl — Wapp €l 4+ Wap ngn” + Wsjpp £ “4.4)

Note that W; = W;(X, Iy, I, 14, I5),i =1, 2,4, 5, and thus

Wip=F DY Wia+ Wi Ly + Wik + Wil + Wislsy,
Wy =(F D), Woa+Win Ly + Warlo gy + Wag Ly + Was Is 45
Wap=(F D Woa+Wig L+ Waslo g+ Wag Loy + Was Is

Wsp=(F ) Ws s+ WisIip+ Washy + Was L, + Wss Is .
Note also that

Win = (Wl,b)‘n = Wit Lipn + Wi2 Lo + Wia Lo + Wis Isjpy + Wi Lip + Wi, Ly

+ Wian Lnp + Wisy Isp + [(F7H)%, Wi 4] (4.6)

In "

The last term on the right hand-side is simplified as

[((F~")", Wy.4] = [((FY % Wia] =y (F7) % Wia

ax"

0
=(F Y (F DY g Wia+ (FH, WWI,A — " (F7A, W4

4.7
Notice that

a(%Wl,A =(F )2, Wi+ E);(LA (Wit hiw 4+ Wia Loy + Wig Ly + Wis Is ]
=(F ) Wiap + Wiialin+ Wina b+ Wisa Lo+ Wisalsn.  (48)
Thus
[(E™D% W]y, = [(FTDPFE Y s =y (F7D ] Wia +(F™H)% (F7HP, Wi ap
+F DY Wil + Wia by 4+ Wi Lo + Wis Is ]
= [(F)2.(F Y s — v (F7)" ] Wi
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+ % [(F—l)Ab (FH8, +(FHB, (F—I)An] Wi as
+EDY% (Wi T+ Wiz b+ Wig L+ Was Isn] 4.9)
Let us denote the independent third-order derivatives of the energy function by W, =
st (i < j < k). Thus
Witw=FE D Wia+Win Ly + Wi by + Wig Ly + Wis s
Wizy =(F )% Wiaa+Win Iy + Wina Ly + Wing Lo + Wias Is o)
Wign =(F ), Wiga + Wing Iy + Wing Loy + Wigg Ly + Wias Is :
Wisw=F D, Wisa+Wisli,+Wias by 4+ Wigs L, + Wiss Is,, .
Hence®
Wien = Wit Ipn + Wiz Dypn + Wia Lapn + Wis Isjn
+ Wi Liplip +Winn(houw Iy + Iy bop) + Wig(y Iy + 11 Lay)
+WisUs, Ly + Lo Isp) + Winnhow Ly + Wina(yy Loy + Ly )
+Wis(Usy by + Ion Isp) + Wisadyn Loy + Wias(Is y Loy + Is p Lsy + WissIs , Is

+ [((F D2 (F Y s — v (F~)A ] Wia
1
+3 [((F)Y (F)E + (FHE, (FY)Y] Wias
+ [(F Y% Ly + (F D% L) Wia+ [(F)% Ly + (F7)Y% L] Wiza

+ [(F Y Ly + (F D L] Wiga + [(F) % Isy + (F)Y Is ] Wisia
4.11)
Similarly,

Waipn = Wiz Iipn + Waz DLjpn + Waa Lajpn + Wos Isppy
Wil hip+Wiallaw lip + Din bop) + W oy b g
+ Waaaday Lap + Woasslsn Isp + WinaUian Ly + Lap 110)
+ Wias(Is Lo + L1 Isp) + Waoaan bop + Lap 12n)
+ Waos(Isu b + Isp Ion + Waas(Is oy Lap + Is p 1a.0)
+ [(FOP (F ) s =y (F7H% 0] Waa

1
+3 [(FH% (F)2 + (FH2, (F7HY] Waap
+ [(F% Ly + (F) % D] Wina + [(F7) Ly + (F™)% Ly ] Waa

+ [(FY % Ly + (F )2 L] Waga + [(F) % Is i+ (F7) % Is ] Wasa
4.12)

3The factor “%” on the sixth line is missing in Egs. (4.7)-(4.9) in [40]. However, this typo did not affect any
of the results of that work.
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Waipn = Wia Lipn + Wos Djpn + Was Lapn + Was Ispp
FWiahiwhip +Waa by Iy + Wasa Iy Inp + Wass Is, Is
+ Wi Lip + 11 Lp) + Wiaas o i p + Lap 1 )
+ Waasdsy Iy + Iy Lap) + Wias(Us Iy + Is p 1y )
+ WausUs, by + Iy Isp) + Waas(Is Ly, + Is p 14.)
+ [(FY2 0 (F ) s = v (F7)A0] Waa
1
+ 3 [(F )Y (FDE + (F Y2, (FTHY,] Waas
+ [(F Y% Ly + (F Y% L) Wisa + [(F)% Ly + (F)Y% L] Wasa

+ [(FY % L + (F Y I ] Waga + [(F) Is o+ (F) Is ] Wasa
4.13)
and

Wsipn = Wis Lipn + Was Lypny + Was Lapn + Wss Ispp,
+Wishinhip+Was by Iy + Waas Iy Lap + Wsss Is , Is
+Wiss(hw Lip+ 11y Dop) + Wias(Is i p + Lap 12 1)
+ Wiss(Usu Iy + 11 p Isp) + Woas(s Iy + 14, 12 )
+ WassUs, Iy + I Is p) + Wass(ls  Lsp + Is p 1)
+ [(F 2 (F ) s — v (F7)] Wsa
1
+ 3 [(FYY% (F 2+ (FH2, (F7H%,] Ws as
+ [(F Y Iy + (F )Y 1] Wisa + [(F7)%% Ly + (F™) Ly Was.a

+ [(F ) Ly + (F) L] Was.a + [(F7) Isp 4+ (F™) Is ] Wss.a -
(4.14)
The symmetry &,, = &, forces the coefficient of each partial derivative of the energy
function to be symmetric. Following the notation introduced in [42], we define 4}, to be the
matrix of the coefficient of W,, where « is a multi-index. The first nine terms are identical
to those of homogeneous isotropic solids: k € K, = {1,2, 11,22,12,111,222, 112, 122}.
They read

1 __gn
ﬂab_ba\b”’

2 _ n
ﬂab = —Cqlbn >

11 n n
Ay =y 11 + (D) ILV!)“, ,

Ay =—Cam Lo — (ci o), -
/q,i[% = (bZ IZ*")\I) + bZIn 12,b - [(CZ Il,n>‘b + CZ\n Il.b:| 5
A =001,

22 "
Ay =—c, by,
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al?=p" (11.17 Ly+ 1, Iz,b) -l hp,
A2 =bLybh,—c (Iip b+ Iinboy) (4.15)

where b} = b"" g4, and ¢}, = c"" g,4. It is well known that the symmetry of the above nine
terms admits six families of deformations [8, 20, 34]. For both homogeneous and inhomo-
geneous transversely isotropic solids, we have 25 extra terms:

=1{4,5,44,55,14,15,24,25,45, 444,555, 114, 115, 124, 125,
144, 145, 155, 224, 225, 244, 245, 255, 445, 455} . (4.16)

These terms read [42]:
Al =g n"Yp s
ﬂsb =Lonb »
A= a0 Lo+ (1" Lo
A =L s+ (Lo Is )b
Ay =l Lap + B Low)p + (o L + (ngn™ I )i (4.17)
Ay =l Isp + B Is)ip + Lo iy + (€0 Ty
/ng =mgn" ) Loy + (gn" L)y — [Cg\n Ly +(c; 14.;:)\1:] )
=Ly + g L)y — [CZ\n Is; + (c; IS.n)Ib} ,
=g Isp + an" Is )iy + Lo Loy + (€5 L)y
and
A =n,n" Ly, Ly,
AP =015, 15,
alt =pr (Linhip+ Lip Iip) +nan Iy Ip

A =02 (Ln oy + Inp o) — ¢ (Law Iy + Isp D) + 00" (b iy + Lo i)

)
A =60 (Iuhip+IspLin) + 0 L Lp.
) -
A= (Isubp+Isp b)) — i (Isn Dip 4+ Isp D) + €0 (b Iy + B I
At =0 Ly Loy +nan" (Low Dy + Lo Iha) s
A, =b) (Isp Lo+ Isp Lay) +nan” (Isy Ly + Isp L) + €5 (Iw Do + L 110
A =) Isulsp+ € (Isn o+ Isp Iin)
At =ngn" Ly — ) (Ian by + Tap Ion)
A =0 by by — ¢y (Isn o+ Isp L)
At ==l Ly Ly +nan”" (Iw by + Loy Ion)

A =ngn" (Isw oo+ Isp L) + 0 (o Doy + Lap on) — € (Is Lo+ Is o Ian)
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a = (15,11 Ly+Isy, IZ,n) —chls, sy,
A =nan" (Isy Ly + Isp Loy) + € Ly Ly

A =nan" Isy Isy + 00 (I Ly + Isp Luy) - (4.18)

It turns out that the known universal deformations are invariant with respect to certain Lie
subgroups of the special Euclidean group [15]. In [42] we conjectured that for each family of
universal deformations the corresponding universal material preferred direction vector N is
invariant under the same Lie subgroup. For each of the six families of universal deformations
we found the corresponding universal material preferred directions.

For inhomogeneous incompressible transversely isotropic solids, in addition to the uni-
versality constraints (4.15), (4.17), and (4.18), there are the following eighteen extra sets of
universality constraints (each term must be symmetric in (ab) for A=1,2,3,and B > A):

Cl? =(F71)An n\b+(F I)Ab ba\n bZ I:(Fil)Bb (Fil)An,B _ymnb (Fil)Am:I s
Cr=F N+ F D+ [(FY2(F D) =" (FH ]

=00 [(FO L+ (F) 1]

Ct = [(F ) Ly +(F ) Lyl (4.19)
Cpt=b, [(F )An12b+<F DAy L] =t [(F7YY Ly + (F~Y % 1]

P = [(FA (FHP, + (FHE,(FTHA]

CffB—cl[(F Y (FOE + (F )2, (F~HA]

and

Gt = (F YA, (nan™)p + (F~H%, (nan™),
+nan" [(FH2, (F D 5 —y"w (F )],
=(F )+ (F )+ € [(FYP e (F Y s = v (FH%]
q};‘*‘ = b, [(F)Y Ly +(FD) Y Ly ]+ nan” [(FDY Ly + (F™HY 1]
G =g [(FTO N L5+ (F7) Is] + €4 [(F™DY Ly + (F7D L]
ot == [(F N Ly + (F Y L]+ nan™ [(F7A L+ (FHY B,]
ot == [(FY Y Isp + (F ) Is, ) + 0 [(F7)Y Ly + (F7H )
Gt =nan" [(F), Ly + (F )% Ll
Gt =nan" [(F) Isy + (F )Y Is,] + 02 [(F™) Ly + (F) ) Ll
Gt =0 [((F ) Isp +(F )Y Isa]
CHB = non" [(FO)Y, (FE, + (F)2, (F 7))
P = [(FHYY (FTHE, + (FHE, (F7HA,) 4.20)
The set of universality constraints (4.19) are identical to those of inhomogeneous isotropic

solids [40]. For a given family of deformations and material preferred directions that are
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consistent with (4.15), (4.17), and (4.18), the corresponding inhomogeneities that respect
(4.19) and (4.20) are called the universal inhomogeneities. In the following subsections,
for each of the six families of universal deformations the corresponding universal inhomo-
geneities will be determined. This will be done by looking at each term in (4.19) and (4.20)
and examining its symmetries. If a particular term cannot be symmetric, the corresponding
derivative of W has to vanish, giving us a constraint on the form of W.

4.1 Family 0: Homogeneous Deformations

With respect to the Cartesian coordinates {X*} and {x“} in the reference and current
configurations, respectively, a homogeneous deformation has the representation x“(X) =
F4, X4 4%, where [ F“ 4] is a constant matrix and [c“] is a constant vector. The incompress-
ibility constraint is then det[ F“ 4] = 1. For a homogeneous deformation the right Cauchy-
Green tensor has the constant components Cp = F4 F4 8,5, which implies that C is
invariant under the action of 7'(3) C SE(3)—the group of translations. In [42] it was as-
sumed that N(X) is invariant under 7'(3) as well, i.e., N is a constant unit vector. We choose
the Cartesian coordinates (X!, X2, X?) such that

d
N=—, 4.21
X! (“-21)
ie, NA= 8{4. With this assumption the universality constraints (4.17) and (4.18) are sat-
isfied. For homogeneous deformations, the first five sets of universality constraints (4.19)
are trivially satisfied. The last two sets force the deformation to be the identity [40]. This
implies that

Wiap=Wiap=0, A, B=1,2,3. (4.22)

For isotropic solids, the relations Wy ap = (Wi.4) , =0, and W ap = (W2.4) , =0 imply
that ' ’

oW, oW, AW
— = filli.h). = hUL L), ——=fil. D),
X X X 4.23)
W, AW, AW, '
=& h), —=gl6,h), —=glh).
ax1 gith, I) e &(h, 1) e g(h, I)
Note that
afi(ly, I) _ agi(I;, Ip) afr(1y, I) _ 08211, I) af3(1, Ip) _ dgs(11, Ip)
L, arL, L, arn, -’ L, an,
(4.24)
From (4.23);, one concludes that
WiX, 11, b) = fo(li, L)+ filly, X'+ foly, L)X* + f3(I, L)X (4.25)
Thus
WX, I, L) = f folly, LydI; + X' f fith, bydl; + X? / A, Bdl
+X° / AL, bydlL +RX, ), (4.26)
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for some function R(X, I,). Hence

afo(ly, I af1(1y, I Afs(ly, I
Wz(x,11,12):/Md,]+X1/ fith 2)d11+X2/ UN

812 812 a12
af3(1h, 1) IR(X, )
X’ dl
* / b L
afo(Iy, I agi(I, I aga(1y, 1
:/ folly 2)d11+X'/ gi(h 2)d11+X2/ g1 2)d11
812 311 811
ags(Iy, I IRX, I
+X3/ g, ) 9 X, 1)
al al,
dfo(1, 1)
= / = g D)X+ g D)X+ g5 D)X
2
IR(X, I
IRX, L) “.27)
ol
Substituting the above identity into (4.23), one concludes that
d ORX, I 0 ORX,I 0 ORX,I
_(—”:_M:_MZO. (4.28)
axXt AL x> b X3 AL
This implies that
OR(X, I
IROVE) _yny, (4.29)
I,

and hence R(X, I,) = R;(X) 4+ R,([). Using this in (4.26), up to a mechanically incon-
sequential X-dependent term one concludes that for an incompressible isotropic solid the
energy function is a linear function of the Cartesian coordinates, i.e.,

WX, I, L) =W, L) +H(, L)X, (4.30)

for some vector H(I;, I,).*

In the case of inhomogeneous transversely isotropic solids, one still has the constraints
(4.22). The first nine sets of universality constraints (4.20) are trivially satisfied for homoge-
neous deformations and constant N. The last two sets of constraints in (4.20) are nontrivial.
The universality constraints corresponding to Eq. (4.20),, read

ng [N*(F )2, + N2 (F)") ) Waap =np [N* (FHP + NP (F) ] Wi ap.

Knowing that N4 = §{!, the above constraints are rewritten as @30
[na(F_l)Ab - l’lb(F_l)Aa} Wiia=0, a,b=1,2,3. (4.32)

This is equivalent to
FOuFy [na(F ) —ny(F)* ] Waa =0, M, N=1,2,3,  (433)

4In [40] from (4.22) it was incorrectly concluded that W(X, I, I,) = W(I}, I,). Proposition 4.1 in [40]
should be corrected to read: “For inhomogeneous incompressible nonlinear isotropic solids, Family 0 defor-
mations are universal for any energy function of the form W(X, Iy, I,) = W(I1, I) + H({1, 1) - X.”
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which is simplified to read
Coi Wiy —Cyi Wy iy =0, M,N=1,2,3. (4.34)
These are three constraints corresponding to (M, N) = (1, 2), (1, 3), and (2, 3), and read
CiiWyi2— Coy Wy 11 =0,
Cii Wai3 — C3y Wy 11 =0, (4.35)
Cot Wy 13 — C3y Wy 12 =0.

Notice that these need to be satisfied for an arbitrary matrix [C 4] with unit determinant.
This means that Wy 1y = Wy 10 = W13 =0.
The universality constraints corresponding to Eq. (4.20);, read

CFE D FE D+ (F P (F)Y] Wsas
=0 [(FY (F Y2+ (F Y2, (F )] Wsag. a.b=1.2,3. (4.36)
This can be simplified to read

C*y [Cyt Ws.kn + Cux Wsay — Cyvit Wk — Cyg Wsam] =0, M, N=1,2,3.
4.37)
These are three constraints corresponding to (M, N) = (1, 2), (1, 3), and (2, 3), and read

(2C"1Cyy + C*Cop + C?1Co3) Ws 1y — (2C1Cyy + C*1Cr3) Ws 12+ €71 Coy Ws 13
—C*1C1 Ws 3o — C*1C 1 Ws 23 =0,

(2C"1C31 + C*Cxp + €1 C33) Ws 1y 4+ C*1C3 Ws 1 — (2C" 1 Cyy + C*(Cra) Ws 13
—C*1C Ws 3 — C*1C11 Ws 33 =0,

(2C"1C31 + C*Cx + C?1C33) Ws 12 — (2C1 1 Cay + C*1Cop + €71 Ca3) W 13
+C*1C31 W52 + (C*1C31 — C*1Ca1) W3 — C1Coi Ws 33 =0. (4.38)

These must be satisfied for an arbitrary matrix [C4p] with unit determinant. If [C4p] is
diagonal, one concludes that Ws 1, = W5 ;3 = 0. Considering simple shear in the X Ix2.
plane (Cj3 = Cy3 = 0), one concludes that W5 1 = W5 2, = W5 3 = 0. Substituting these in
the above equations, one concludes that Ws 33 = 0. Therefore, Wy 45 = 0.

In summary, for the universality constraints to hold one must have

Wi p=Woa)g=Ws1)p=Ws4)=0, A, B=123. (4.39)

Using arguments similar to those used in deriving (4.30), one can show that the above con-
straints imply the following proposition.

Proposition 4.1 For inhomogeneous incompressible nonlinear transversely isotropic solids
with material preferred direction parallel to the X'-axis in a Cartesian coordinate system
(X', X2, X3), Family 0 deformations are universal for any energy function of the following
form

WX, Iy, I, Iy, Is) = W(Iy, I, Iy, Is) + H(L, I, Lo, Is) - X+ W(X2, X3, 1), (4.40)
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Remark 4.2 Note that the last term of the energy function in (4.40) has a form identical to
that of compressible orthotropic solids (3.34).

4.2 Family 1: Bending, Stretching, and Shearing of a Rectangular Block

Consider a rectangular block and a Cartesian coordinate system (X, Y, Z) with coordinate
planes parallel to the faces of the block. In the current configuration cylindrical coordinates
(r,0, z) are used. With respect to these coordinates, the Family 1 deformations have the
following representation

r(X,Y,2)=Ci2X +Cy), 0(X,Y,Z)=C(Y +Cs),

V4 4.41)
X,Y,72)= —C,C3Y 4+ Cg,
Z( ) C,C, 203 6
where Cy, ..., Cg are constants. The right Cauchy-Green strain reads
C
2X+1C4 0 (Zf
[Casl=| 0 GORX+CH+C] -3 |, (4.42)
C 1
0 -G cacq

and is independent of ¥ and Z, i.e., C® is invariant under the action of 7'(2) C SE(3). In
[42] it was assumed that N has the same symmetry, i.e.,

N'(X)
N(X,Y,Z)= | N*(X) | , (4.43)
N(X)

where (N'(X))?> + (N%(X))? + (N3(X))? = 1. It was shown that the universal material pre-
ferred direction has the following possible forms

+1 0
N=|0]|, N=| cosy(X) |, (4.44)
0 +siny (X)

where 1/(X) is an arbitrary function. Notice that (4.44); corresponds to a uniform distri-
bution of fibers parallel to the X-axis. In the other universal material preferred direction
distribution (4.44),, for fixed X fibers make an angle ¥ (X) with the Y-axis, and are dis-
tributed uniformly in the Y Z-plane.

In [40] it was shown that the constraints (4.19) imply that

OWy  OWy OWh  aWs
Y 8z aYy 9z

(4.45)
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The above relations hold for inhomogeneous transversely isotropic solids as well. For the
universal material preferred direction (4.44),, one can show that’

Gy =0, for (A,a,b)=(2,1,2) = C; =0,
Gy =0, for (A,a,b)=(3,1,2) = C;C2C3=0,

N (4.46)
Gy =0, for (A,a,b)=(2,1,2) = [Ci(Cs+2X)]* C; =0,
G4 =0, for (A,a,b)=(3,1,2) = C,C5[C1(Cy +2X)]} =0.
These constraints cannot be satisfied, and hence
W, oW, aW. oW.
Pt T " ), (4.47)

Y 9z Y 0z
Similarly, for the universal material preferred direction (4.44), one has the following con-
straints:

o Gy =0, for (A,a,b)=(2,1,2) requires that
C2y/C1(Cy+2X)cos ¥ [2(Cy +2X)Y sinyy —3cos Y] =0. (4.48)

o Gy =0, for (A,a,b)=(3,1,2) implies that
C2y/C1(C4+2X) [C1C3C5c08* ¥ + (C4 +2X)y cos 2 +sin2y] =0.  (4.49)

o Gy =0, for (A,a,b)=(2,1,2) requires that

Cr\/Ci(Cs +2X) {2(c4 +2X)¥' [C1C5sin2y (C1Cy +2C1 X + C3) 4 C3cos 2y |

—2C; Ccos” ¥ [5C1(C4+2X) +3C3] 4 3C5 sin21p} =0.

(4.50)
. C[SH/},] =0, for (A, a, b) = (3, 1, 2) requires that
(C4+2X)°y' cos 2y [C} C35 (C1(C4+2X) + C3) + 1]
+(Ca+2X){CICiCs cos 2y (C1 Ca+2C1X +C2)
+sin2y [2C} C3(Cy +2X) + 1]
+C1C3C[C]C3(C1Ca+201X +CE) —2] } =0. (4.51)

None of the above constraints can be satisfied, and hence, (4.47) holds for this case as well.
From (4.45) and (4.47) one concludes that up to a mechanically inconsequential function
of (X, Y, Z), the energy function must have the form W = W(X, I, I,, 14, Is). For energy
functions of this form, in (4.19) and (4.20) one only needs to check the symmetry of the
terms with A =1, and A = B = 1. All those terms are symmetric.

SAll the symbolic computations in this paper were performed using Mathematica Version 12.3.0.0, Wolfram
Research, Champaign, IL.
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Proposition 4.3 For inhomogeneous incompressible nonlinear transversely isotropic solids
with any of the universal material preferred directions given in (4.44), Family 1 deformations
are universal for any energy function of the form W = W(X, I, I, 14, Is).

4.3 Family 2: Straightening, Stretching, and Shearing of a Sector of a Cylindrical
Shell

Consider a sector of a cylindrical shell that is parametrized by cylindrical coordinates
(R, ®, Z). In the deformed configuration Cartesian coordinates (x, y, z) are used. Family
2 deformations have the following representation

1 ®
R,0©,Z)==-C,C>R*+ (4, R,©®,7)= +Cs,
x( ) 516 4, Y( ) c. G 5
(R,©,2)= S orlzic (4.52)
Z ) 5 — Cl C2 C2 6 .
and hence
CIC5R* 0 0
0 C§+1 C3
[Capl= 2z ¢z . (4.53)
C; 1
0 cfc% c?

It is seen that the right Cauchy-Green strain is independent of ® and Z. In [42] it was
assumed that N has the same symmetry, i.e.,

N'(R)
N(R,©,2)= | N*(R)| , (4.54)
N*(R)

such that (N'(R))?> + R*(N%(R))*> + (N*(R))*> = 1. Tt was shown that there are two solutions
for the universal material preferred direction:

+1 0
N=|0]|, N=|xcosx(R)]|, (4.55)
0 +sin x(R)

where x(R) is an arbitrary function. In the case of (4.55), fibers are distributed radially.
In the solution (4.55),, if cos ¥ (R) # 0, &1 fibers are distributed helically, if cos Y/(R) =0
they are distributed parallel to the axis of the shell, and if cos ¢(R) = %1 they are concentric
circles in the (R, ®)-plane.

In [40] it was shown that the constraints (4.19) imply that

90~ 9z~ 9O 3z

Wi dW,  aWy oW, (456)
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The above relations hold for inhomogeneous transversely isotropic solids as well. For the
universal material preferred direction (4.55);, one can show that

G4y =0, for (A.a,b)=(2,1.2) = C}C3 =0,
CEI‘J‘Z]ZO, for (A,a,b)=(3,1,2) = C,C;C3=0,

4.57)
Gy =0, for(A,a,b)=(2,1,2) = C{C]R*=0,
Gy =0, for(A,a,b)=(3,1,2) = C{C]C3R*=0.
These constraints cannot be satisfied, and thus
oW, oW, W5 W
1T _ T T, (4.58)

90~ 9z e 9z

Similarly, for the universal material preferred direction (4.55), one has the following con-
straints:

e Gy =0, for (A,a,b)=(2,1,2) requires that
cos x(R) [R x'(R)sin x(R) +cos x(R)] =0. (4.59)

. C[‘l‘@] =0, for (A, a, b) = (3, 1, 2) implies that
sin2x(R) — 2R x'(R)cos2x(R)=0. (4.60)

. C[sz‘;] =0, for (A, a, b) = (2, 1, 2) requires that

Rx'(R)[(1+C3)sin2x(R) — CiC3R cos2x(R)]

+cos x(R) [3C1C3R sin x(R) 44 (1 + C3) cos x(R)] =0. (4.61)

. C[Sa/}‘,] =0, for (A, a, b) = (3, 1, 2) requires that

—R (14 CIR*+C3) x'(R)cos2x(R) + (3+ CIR* +3C3) sin2x(R) + 2C; C3R =0.
(4.62)

None of the above constraints can be satisfied,® and thus, (4.58) holds for this case as well.
From (4.56) and (4.58) one concludes that up to a mechanically inconsequential function
of (R, ®, Z), the energy function must have the form W = W(R, I, I, I, Is). For energy
functions of this form, in (4.19) and (4.20) one only needs to check the symmetry of the
terms with A =1, and A = B = 1. All those terms are symmetric.

Proposition 4.4 For inhomogeneous incompressible nonlinear transversely isotropic solids
with any of the universal material preferred directions given in (4.55), Family 2 deformations
are universal for any energy function of the form W = W(R, I, I, 14, Is).

%Note that we are finding the universal inhomogeneities for an arbitrary universal material preferred direction
in (4.55)7, and hence, cos x(R) # 0, in general, i.e., (4.59) cannot be satisfied.
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4.4 Family 3: Inflation, Bending, Torsion, Extension, and Shearing of a Sector of an
Annular Wedge

Family 3 deformations, with respect to the cylindrical coordinates (R, ®, Z) and (r, 0, z) in
the reference and current configurations, respectively, have the following representation

R2
R,®,2) = —+Cs5, 0(R,0,2)=C,0+CrZ+ Cg,
r( ) C1C4—C2C3+5 ( ) 1©+CZ+Cs
Z(R,0,2)=C30+C4Z + (7, (4.63)
and hence
R2
K(KC5+R2) 02 " 0

[Casl=| O G+ +c]  aa[Brclraa|, @6

0 GG [E+C|+a0 G+ [E 4+

where K = C,C, — C,C3. Notice that C” is independent of ® and Z. In [42] it was assumed
that N has the same symmetry, i.e.,

N'(R)
N(R,©,Z)= | N*(R) | , (4.65)
N3(R)

where (N'(R))? + R*(N*(R))> + (N*(R))> = 1. It was shown that there are two solutions
for the universal material preferred direction:

+1 0
N=|0|, N=|xcosy(R) |, (4.66)
0 +siny(R)

where {(R) is an arbitrary function.
In [40] it was shown that for this family of deformations constraints (4.19) imply that
owy oW, oW, oW,

= == = (4.67)
10 0Z 0 Z

The above relations hold for inhomogeneous transversely isotropic solids as well. For the
universal material preferred direction (4.66);, one can show that

Giby =0, for (A,a,b)=(2,1,2) = C4(—2C,C3Cs5+2CC4Cs + R*) =0,
Gy =0, for (A,a,b)=(3,1,2) = C3(—2C,C3Cs5+2C; C4Cs+ R*) =0, o)
G =0, for (A,a,b)=(2,1,2) = C4(—4C,C3Cs5+4C,C4Cs+ R*) =0,
Gy =0, for (A,a,b)=(3,1,2) = C3(—4C,C3Cs+4C1C4Cs + R*) =0.
These constraints cannot be satisfied, and hence
oWy _oWs _0Ws _ aWs _ 4.69)

90~ 9z~ 9O 3z
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Similarly, for the universal material preferred direction (4.66), C[‘:;,‘,] =0, for (A,a,b) =
(2,1, 2) requires that:

(C1C4Cs — C,C3 Cs + R?) {2C3 €3 C5 — 4C} €3 C3.C4 Cs + €} €, C3 CsRsin 29/ (R)
—C} C4R* 4 cos2¢(R)[2C] C; Cs — C7 C4 (4C, C3 Cs + R*) 4+ 2C,C5C5Cs
+C3C4R*] +2C; C5 C5 Cs —2C, C5 C3C4 Cs Rsin 2y (R)

—2RY'(R)(C,C3 — C Cy) (—C1 C4C5 + C,C3Cs — R?)

X [Cy Rcos2y¥(R) — Cy sin2¢¥(R)]

—3C; C, C4 R*sin2¢/(R) + C3 C3 Cs Rsin2y/(R) 4+ C3 C3 R* sin2¢/(R)

-Clcy R4} =0. (4.70)

The constraints C[%] =0, for (A,a,b)=(3,1,2), C[SQ’Z] =0, for (A,a,b)=(2,1,2), and
C[Sl{?)] =0, for (A, a,b) = (3, 1, 2) require vanishing of some lengthy expressions that we do
not report here. None of these four constraints can be satisfied, and thus, (4.69) holds for this
case as well. Similar to Family 2 deformations, from (4.67) and (4.69) one concludes that
up to a mechanically inconsequential function of (R, ®, Z), the energy function must have
the form W = W(R, I, I,, 14, Is). For energy functions of this form, in (4.19) and (4.20)
one only needs to check the symmetry of the terms with A =1, and A = B = 1. All those

terms are symmetric .

Proposition 4.5 For inhomogeneous incompressible nonlinear transversely isotropic solids
with any of the universal material preferred directions given in (4.66), Family 3 deformations
are universal for any energy function of the form W = W(R, I, I, 14, Is).

Physically, this universal inhomogeneity and directions can be understood as follows:
A particular case consists of a single homogeneous cylindrical tube with helical preferred
directions. Now, consider a series of encased homogeneous cylindrical tubes in the reference
configuration, each with its own helical material preferred directions as describe in [16]. The
solution from Proposition 4.5 is a continuous version of this problem where the variation in
helical fibers and material properties only depends on R.

4.5 Family 4: Inflation/Inversion of a Sector of a Spherical Shell

Family 4 deformations with respect to the spherical coordinates (R, ®, ®) and (r, 6, ¢) in
the reference and current configurations, respectively, have the following representation

r(R,0,®)=(+R*+C}), 6(R,0,d)=4+0, ¢(R,0,0)=0>. 4.71)
Thus
R4
(cizr) ° °
[Cagl= 0 (C3+ R3)2/3 0 , (4.72)
0 0 (C} R sin*©
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which can be written as [15]

) RY o o (CIER)T L
CX)=———7ROR+——F—"—(1-RQR), (4.73)
/3 2
(€1 =R R
where 1 is the identity tensor, and R = |§—| This implies that at a given point X, C” is

invariant under all those rotations that fix X. Yavari and Goriely [42] assumed that N(X) has
the same symmetry, i.e., it is invariant under all those rotations that fix X. Thus, N(X) is
parallel to X, and knowing that it is a unit vector one concludes that

X ~
NX) =+ +R. (4.74)

m_

This means that the universal material preferred direction is radial, i.e., with respect to the
spherical coordinates

+1
NX)=|0 |. 4.75)
0

In [40] it was shown that for this family of deformations constraints (4.19) imply that

oW, aW, _ aW, oW,

R Y e (4.76)
0 9d 90 00

The above relations hold for inhomogeneous transversely isotropic solids as well. For the
universal material preferred direction (4.75), one can show that

Gy =0, for (A,a,b)=(2,1,2) = 4C; R— R* =0,

Gy =0, for (A,a,b)=(3,1,3) = 4C{R— R*=0,

Gy =0, for (A,a,b)=(2,1,2) = —8C; R°+ R* =0,

Gy =0, for (A,a,b)=(3,1,3) = —8C] R° + R*=0. 4.77)
These constraints cannot be satisfied, and hence

owy, oWy oWs 0W;s

Tt _ T _ T 4.78)
00 P 00 0o
From (4.76) and (4.78) one concludes that up to a mechanically inconsequential function of
(R, ®, ®), the energy function must have the form W = W(R, I, I, 14, Is). For any energy
function of this form, in (4.19) and (4.20) one only needs to check the symmetry of the terms
with A =1, and A = B = 1. All those terms are symmetric.

Proposition 4.6 For inhomogeneous incompressible nonlinear transversely isotropic solids
with the universal material preferred directions given in (4.75), Family 4 deformations are

universal for any energy function of the form W = W(R, I, I, 14, Is).

Again, this result can be understood physically as the continuous limit of a finite number
of encased homogeneous spherical shells with different material properties.
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4.6 Family 5: Inflation, Bending, Extension, and Azimuthal Shearing of an Annular
Wedge

Family 5 deformations with respect to the cylindrical coordinates (R, ®, Z) and (r, 0, z) in
the reference and current configurations, respectively, have the following representation

1
r(R,®,Z)=C|R, 6(R,0,Z)=ClogR+ C30+Cy4, z(R,@,Z):WZ—i-Cy
1 %3

(4.79)
Thus
C2(C3+1) C2G,GR 0
[Capl=| CIC2C3R CiC3R* 0 | | (4.80)
1
0 0 e

which only depends on R. Yavari and Goriely [42] assumed that N has the same symmetry,
ie.,

N'(R)
N(R,©,Z)= | N*(R)| , (4.81)
N3(R)

where (N'(R))> + (N%(R))*> + (N3(R))*> = 1. They obtained the following two solutions for
universal material preferred directions

0 cosé&
1 .
N=|gcosn|, N= j:% sin& | (4.82)
+sinn 0

for arbitrary constants n, and &. Unfortunately, there was a mistake in checking the uni-
versality constraints for solution (4.82),: This solution satisfies all the universality con-
straints other than the symmetry of the coefficient of Wy for (a, b) = (1, 3), which gives
C,cosnsinn = 0. Note that sinn = 0 in (4.82); corresponds to cosé = 0 in (4.82),. This
means that the correct set of universal material preferred directions for Family 5 are:

0 cos&
N=|0 |, N=|*Lsing|, (4.83)
+1 0

for an arbitrary constant &.
In [40] it was shown that the for Family 5 deformations constraints (4.19) imply that

AW, AW, AW, oW, oW, AW
SOAR I A N R A (4.84)
aR 90  9Z 9R 090 0z

The above relations hold for inhomogeneous transversely isotropic solids as well.
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For the universal material preferred direction (4.83), all the terms in (4.20)(,_o) are sym-
metric. In the last two sets of equations the following four terms are not symmetric:

GiaB #£0, for (A, B,a,b)=(1,3,1,3),
Gl £0, for (A, B,a,b)=(2,3,1,3),

(4.85)
ol #0, for (A, B,a,b)=(1,3,1,3),
GoAP #0, for (A, B,a,b)=(2,3,1,3).
This implies that
3*W. a2W. W W,
4 4= S > 0. (4.86)

ARIZ 3O®IZ ORIZ 93OIZ

From (4.84) and (4 86) one concludes that W(X, I\, I, Iu, Is) = W, I, I, Is) +
W(R O, 1, Is) + W(Z 14, Is). For an energy function of this form, in (4.19) and (4.20)
one only needs to check the symmetry of the terms with A =1, and A = B = 1. It turns out
that all those terms are symmetric.

For the universal material preferred direction (4.83),, one can show that

G4 =0, for (A,a,b)=(1,1,2) = C) cos& [Cscos & + C3sing] =0
Gy =0, for(A,a,b)=(2,1,2)= C [(1+ C3) cos’§ — C3sin° | =0,
Gy =0, for (A,a,b)=(3,2,3)=
Ci C3[(=14C3) cos* & + C3sin& (2Cy cos€ + Cssing)] =
Gy =0, for (A,a,b)=(1,1,2)=
CH2C, [14+C3 +C3 + (1+C3) cos 26] + C3 (1+3C3 + C3) sin2¢ } =0,
Gy =0, for (A,a,b)=(2,1,2)=
CH (1463 + €3] cos 2 + (143 = C3) (14 C3 + C3 + CoCs5in2¢) |
=0,
Gy =0, for (A,a,b)=(3,2,3)=

CP 0 {20 [1+C3+ €3+ (14 C3) cos 28] + C5 (14 3C3 + C3) sin2¢ } =0.
4.87)
None of the above constraints can be satisfied,” and hence

Wy  OWy  OWy  OWs  9Ws  9Ws
AR ~ 90 ~ 9Z AR 9O 9z

=0. (4.88)

From (4.84) and (4.88) one concludes that the energy function must be homogeneous. This
means that Family 5 deformations are not universal for inhomogeneous incompressible
transversely isotropic solids with the universal material preferred directions (4.83),.

"Note that we are finding the universal inhomogeneities of the energy function for an arbitrary member of
this class. That means that cos & # 0, in general, i.e., (4.87)1 cannot be satisfied.

@ Springer



128 A. Yavari, A. Goriely

Proposition 4.7 For inhomogeneous incompressible nonlinear transversely isotropic solids
with the universal material preferred directions given in (4.83);, Family 5 deformations
are universal for any energy function of the form W(X, I, I, Iy, Is) = Wi, L, I, Is) +
W(R, O, I, I5)+ W(Z, 14, I5). Family 5 deformations are not universal for inhomogeneous
incompressible transversely isotropic solids with the universal material preferred directions
(4.83),.

Table 2 summarizes our results for inhomogeneous incompressible transversely isotropic
solids.

5 Incompressible Orthotropic Elastic Solids

For inhomogeneous orthotropic solids

Eu = Gam [WiD"™ — W ™ + Wy n''n't + Ws €0 + We ninls + Wy €3] (.1

|n

In order to satisfy the symmetry &,;, = &, for an arbitrary energy function the coefficient of
each partial derivative of W must be symmetric. There are five groups of terms. The first four
were derived in [42]. In order for this work to be self contained, all the five groups are re-
ported below. The first four groups of terms that must be symmetric for both incompressible
and compressible orthotropic solids are:

i) Nine terms that need to be symmetric for isotropic solids as well:
Kiso = {1,2,11,22,12, 111,222,112, 122}. (5.2)
i1) 25 terms associated to N;:

%K =1{4,5,44,55, 14, 15,24, 25, 45,444,555, 114, 115, 124, 125,
144,145, 155, 224,225, 244, 245,255, 445, 455} . (5.3)

iii) 25 terms associated to N:

%,; =1{6,7,66,77,16,17,26,27,67,666,777,116, 117, 126, 127,
166, 167,177, 226, 227,266, 267,277, 667, 677} . 54

iv) 24 terms corresponding to coupling of N; and N,:

Kii = {46,47,56,57, 146, 147, 156, 157, 246, 247,256, 257, 446, 447,
456,457, 556,557, 466,467, 566, 567,477,577} . (5.5)
v) 33 terms that correspond to the inhomogeneity of the energy function. 18 of these are
identical to those of isotropic (4.19) and transversely isotropic solids (4.20).

In [42] it was noticed that X; and %;; universality constraints have forms identical to
those of XK universality constraints (4.16). This implies that (N, N,, N3) is universal for
orthotropic solids if i) Nj, N;, and N3 are universal for transversely isotropic solids, and ii)
the three pairs (N, N»), (N, N3), and (N3, N) satisfy the %;;; universality constraints. We
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130 A. Yavari, A. Goriely

follow the notation introduced in [42], and let (n, m) = (ny, my), and (£°°, K9°) = (£5°, €5P).
The coefficients of the derivatives of the energy function associated to the set %;; are:

A = [ Lo 1" 1o + Lo pL 110 0"+ [ Ly 1" Ny + Ly p [ty 10",
Ay = Ly 01 + Dol 0"+ (K Lapp + KL Lo s
A0 = (L Ts)p + L Top + (o Is 1) + (i ") Ts
A= L)+ 0 B+ R Ts + K i Iso (5.6
and

146

Ay =b) (Laplon+ 14, lsp

227 =b, (Lplrp+1s,ylip
Isp I + Is, Loy

I I7,n + IS,n 17,17

by ( )
b (I, )
a (L5 )
a (L5 )
A0 = (Inp Iow + Isn Iop)
(I I+ Lan 1)
" (Isp Ion + Isn Iop)
" (Isp I+ Is 1)
Ao =" (L Ion + Lo Iop)
A =" (Inp b+ Lo Ip)
AR =na 1" (Isp Ion + I Iop) + 0 (Lop Iow + Lo Ios)
Ay =nat" (Isp I+ I Inp) + 0 (Lip I+ Lon 1)
A0 =mym" (Lo Ion + Isn Iop)
A =mym" (Lo I+ Ion 1) + K (L T + Lo To )
Ay =K (Lp I+ L)
A0 =0 (Isp Ion + Isn Iop)
A =0 (Isp Iy + Isn Irp)
A0 =ty m" (I Iow + Is Ios)

a

A =mgm" (Isp w4 Isn I7.6) + K (Isp Ton + I Lo

a

A =K (Isp I+ I L) - 5.7

For inhomogeneous incompressible orthotropic solids, in addition to the universality con-
straints (4.19), and (4.20) there are the following 15 extra sets of universality constraints
(each term must be symmetric in (ab) for A=1,2,3,and B > A):

Cot = (F™A (g m")p + (F ™A (g ")+ g " [(F~H, (F7H, 5
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— " (FD4],

G =F D K+ (F % K+ K [(FDE (FTD s =y (FH]
CA = b [(F ™) 0 dop + (F™) Ton] + mg m" [(F7A Iy + (F) 1)
ot = [(F ) I+ (FY I] + K [((F) % Loy + (F)Y L
Gt ==l [(F Y S Iop + (F )y Io | + mym" [(F) Ly + (F7YY )
ot =—cl [(F Y oy + (F )Y ] + K [((F) % Ly + (F) 1o
Copt =g " [(F™D 0 dop + (F ™) don] + ma " [(F7A Ly + (F7) L]
Ct=man" [(F By + (F Ba] + K [(FD L + (F7) L]
At = [(F) Top + (F )y Tow ] 4+ mem" [(F™)A Isp + (F7)A 15,
Pt =0 [(F Yy +(F ) ] + K [((FY N Iy + (F) Y Is )

Copt = my " [(F~ Iy + (F™)"y I ] .

Cot =K [(F ) Top + (F)A Io] 4 mgm" [(F7 Iy + (F7) )
=k [(F Y Ly +(F Y Bl

CP = mym" [(F7)A (F7) + (FHP, (F7HY]

CP =R [(FY N (FH8 + (FTHE, (FhY] (5.8)

5.1 Family0

In [42] it was shown that for homogeneous orthotropic solids homogeneous deformations
are universal for any three constant unit vectors (N;, N, N3) that are mutually orthogonal.
In the reference configuration we choose the Cartesian coordinates (X I X2, X3) such that

a a a
N =— Ny=— N3=—. 5.
=051 Ne=om, Na=om (5.9)

The universality constraints still imply (4.39). For homogeneous deformations and constant
(N1, N3, N3), only the last two sets of universality constraints in (5.8) are nontrivial, and
imply that

We2) s =MW74) =0, A,B=1,23. (5.10)

Using a fairly lengthy but standard argument (similar to those of §3.2) one can show that the
constraints (4.39) and (5.10) imply the following result.

Proposition 5.1 For inhomogeneous incompressible nonlinear orthotropic solids, Family 0
deformations are universal for any energy function of the following form

WX, Iy, I, I, Is, I, 1) = W1y, I, L, Is, Is, I;) + H(I}, I, Iy, Is, Is, I7) - X
F WX, L 1)+ WX X3, L)+ WX, X Ig),  (5.11)

where (N1, Ny, N3) are constant unit vectors given in (5.9).
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132 A. Yavari, A. Goriely

Remark 5.2 Note that the last three terms of the energy function in (5.11) have identical
forms to that of compressible orthotropic solids (3.60).

5.2 Family 1

In [42] it was shown that for Family 1 universal deformations the universal material preferred
directions are

+1 0 0
Ni=|[ 0|, Npy=|cosyy(X) |, N3z=| siny(X) s (5.12)
0 +sin Yy (X) Fcosy(X)

where 1 (X) is an arbitrary function. The constraints (4.45) and (4.47) hold for orthotropic
solids as well. Similarly, from (5.8);_, one concludes that

oWs 0Ws oW, W5
020 T _ "7 . (5.13)

Y 0Z oY 0Z
All the other universality constraints are satisfied. Therefore, we have the following result.

Proposition 5.3 For inhomogeneous incompressible nonlinear orthotropic solids with any
of the universal material preferred directions given in (5.12), Family 1 deformations are
universal for any energy function of the form W =W (X, I, I, 14, Is, Ig, I7).

5.3 Families2and 3

In [42] it was shown that for Families 2 and 3 the following family of material preferred
directions are universal.

+1 0 0
N=| 0], No=| =u® | N | sm | (5.14)
0 +sin x(R) Fcos x(R)

where x(R) is an arbitrary function. The constraints (4.56) and (4.58) still hold. Similarly,
from (5.8);_, one concludes that

Ws _dWs _aW; oW,

=% _ 0 _ 0T . (5.15)
90 9z 90 oz

All the other universality constraints are satisfied. Thus, we have the following result.

Proposition 5.4 For inhomogeneous incompressible nonlinear orthotropic solids with any
of the universal material preferred directions given in (5.14), Family 2 and 3 deformations
are universal for any energy function of the form W = W(R, 1, I, 14, Is, I, I7).

Yavari and Goriely [42] showed that for homogeneous incompressible orthotropic solids
Family 4 deformations are not universal. This is the case for inhomogeneous incompressible
orthotropic solids as well.
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5.4 Family5

In [42] the following universal material preferred directions were reported.

0 cosé sin&
Ni=|0 |, Ny=|+£xsiné|, Ny=|Fxcos§|,
| £1 | | 0 0
(5.16)
[+1] [ o 0
N=|0|, N;= %cosn , N; = %sinn
| 0 | | £sinn Fcosn

As was mentioned in §4.6, there was a mistake in one of the families of universal material
preferred directions. In (5.16), either cosn = 0, or sinn = 0, which are already included
in (5.16);. Therefore, the correct families of universal material preferred directions are (we
have relabelled them so that N3 is parallel to the Z-axis):

cos& sin& 0
Ni=|+%siné |, Np=|Fgcosé|, N3=|0 |, (5.17)
0 0 +1

where & is an arbitrary constant.
In [40] it was shown that the for Family 5 deformations constraints (4.19) imply that

aw,  ow, oW, W, oW, OIW
L= PR T, (5.18)
oR 00 0z oR 00 0z
The above relations hold for inhomogeneous orthotropic isotropic solids as well. If we check

the universality constraints for the pair (Ny, N) given in (5.17), from §4.6 we know that
Wi a = Ws 4 = Wes 4= W74 =0, and hence the energy function must be uniform:

Proposition 5.5 For inhomogeneous incompressible nonlinear orthotropic solids Family 5
deformations are not universal.

Table 3 summarizes our results for inhomogeneous incompressible orthotropic solids.

6 Incompressible Monoclinic Elastic Solids

In the case of monoclinic solids
1

Ea = gam Wlbmn - W2 "+ W4 n'lnnill + W5 Z'{m + W(, ng’ng + W7 zgm + )

mn
W €2
|n

6.1)
The universality constraint &,, = &, forces the coefficient of each partial derivative of W
to be symmetric. Yavari and Goriely [42] showed that for monoclinic solids there are an
extra 78 terms corresponding to the following set:

Ko = (8,18, 19,28, 29,48, 49, 58,59, 68,69, 78, 79, 88, 89,
118,119, 128, 129, 148, 149, 158, 159, 168, 169, 178, 179, 188, 189, 199, 228, 229,
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248, 249, 258, 259, 268, 269, 278, 279, 288, 289, 299, 448, 449, 458, 459, 468, 469,
478,479, 488, 489, 499, 558, 559, 568, 569, 578, 579, 588, 589, 599, 668, 669,
678,679, 688, 689, 699, 778,779, 788, 789, 799, 888, 889, 999} . (6.2)

We follow the notation in [42] and write (n,m) =
(ny,my), and ([, K, q“b Z‘I’h, Z Eg’h). The terms corresponding to the set %, are:

Ay = Glinb
A= lip+ (g L)+ G Is)p + bl Iss
A =M o)+ b Loy,
A =gy + () D)o — (hIsn)p — Coin I »
Ay =—(ch Iow)p — Chn Ios
AR =@l Lap + (@ I + (an" Is)p + (a0 Is
Ay = (ngn" o)+ (g "N oy
A=l s + (@ Isd + (G Isdp + £l Iso »
A = o)+ L' To s
a8 = o Lop + (g Lo )y + (mam™ Ig ) + (mam™), Iy p
Ay = (mam" Io )y + (mgm" )y, I
sy = G Do + (& D) + (K Is.)p + Ko I
Al =K To)p + K Tos
A= s+ (¢ I
Agy = G dos + (g T » 6.3)
A =02 (L Isn+ Tin s
A =0 (Liplon+Tinop
!

A% =) (L Isn + L I o Liplsn+Tialsy)

Ay =02 (Lo lon+ b los) —ch (o Ton + Tindoy)

( )
(1, )
(2 ) -
(- ) -
A= (Lp Is + Lon Isp) + a1 (Ip I+ Tin I3 )
A =0 (Isp lop+ Lin Iop) + ta " (Ip Tow+ TinTop)
A =0 (Is Isp + Tsp Isp) + £ (Tip s+ Tin Is )
A =0 (s Iow + Is Iop) + ' (Tip Lo+ T1n To)
AW =7 (Top Isy + Tow Isp) + g m" (L Is o + T Is )
A =0 (Top To + Ton Top) + mgm" (I Toy + I Loy)
AR =00 (b Isn+ I lsy) + K (Dp Isn + Tin Isp)
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A0 =00 (I lon+ Inlos) + K (s o+ Tin o)
A =00 Ly pIs o+ @ (Lo Isn + Iinlsp)

A =02 (IspTow + Isn Iop) + ) (s Ton +Tin o)

A, =0 oy o, (6.4)
A =—cl (bpIsn+ halsy)

A0 =—cl (hplon+huloy)

A==l (L Isn+ Lan Isp) + ta 1" (Bp Is + Ioon Is)

A5 == (Lplo+ Isnlop) + o 1" (L loy+ Doy Iop)

A5 == (Isp Iy + I Isp) + (" (Bop Iy + Lo Is )

A2 = = (Isp Iy + Is Do) + £ (Iop Io + 1o Io)

A28 =~ (Iop Ig + Ton Is ) + ma " (L g+ Lon Is )

A0 =—c (Isp To + o Do) + ma " (L Toy + Dy Io )

A2 = =" (L Iy + Trn Is ) + K (Iop Isn + Ion Is )

P =—c (BpIon+ Indos) + K (Lp Tow + I Ios)
A==l IypIsn+ ) (b Isn + Don Isp)

A0 =—cl (IspTon+ Isndop) + ' (I Io + Ion Iop)
A =—ci oy lo,

A =" (Lip Isw + Lo Isp)

Ay = " (Lap Ton+ Isnloy) (6.5)

A0S =na " (Isp I+ Isn Isp)

S =" (Isp Lo+ Is, Iosp)

0 (T Ign + Lan I )
7 0 (Lap do + Tan dop)
Aot = nat" (Lo I + Lo Is.) + g m" (Lap Is.n + Lon Is )
A = " (T Tou + T Ton) + " (Lup To + Tan Do)
(n ) K (L Is e+ Lan Is )
A =nan" (Ip loy+ In o) + K (Lo To + Lo Ios)

A =n 1" (L Isn + Irn Is
A =, 1" Isp Iy, + (Isp Isn + I Ig,b) ,

Ay =" (Isp Ioy + Isn Iop) + g0 (I o + Lo Do)
)4‘499 =g nn I9,h I9,n 5

A =0 (Isp Isn + Isn Is )

A =0 (Isp Tow + I Io)
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A =11 (I Is.n + Lo Is ) + ma " (Isp I + Is.n I )

A3 = (I Ton + Tonlos) + ma " (Is Io + Is 1o )

AP =0 (B Isn + Trn dsw) + K (I Isn + Isn Iss)

AL = [ (Fpdow + I dos) + K (s o+ Is To) 6.6)

and
A =0T Is o+ g (I Is + Isn Is)
A =" (Isp Ioy + Is dop) + g (I To + Is o)
A% =G o Io.n,
ASS =y m" (Lo Ign + Ion Is )
AL =g " (Lo Lo+ Ion Ioy)
A5 =mym" (I Iy + I ds ) + K (Top Isn + Ton Isp) »
AP =mam" (I Io + I lop) + K (I Ton + Ton Ios)
AN =y " Is p I + ! (To.s Isn + Ton Is )
A5 = mym" (IspIo + Isnlos) + 45 (I Tom + Tow Iow)
A5 =mym" Top o,
=k (Bp Isn + I Isp)
AP =K (hplon+Ianloy)
A =K Igp I+ g (Io Isn + Ira I3 )
AL =K (Isp Tow+ Isndop) + ¢ (Irp Tow + Irn Ioy)
A =Koy Io,
888_% Lpls,,
A =g (Isp Ioy + Isn Ioy)
29

s =, lop Lo, . (6.7)

For inhomogeneous incompressible monoclinic solids, in addition to the universality con-
straints (4.19), and (4.20) there are the following 16 extra sets of universality constraints
(each term must be symmetric in (ab) for A=1,2,3,and B > A):

= F ) g+ (F Y g+ ¢ [(FDE (F ) s — v (FD]
Gt =0 [(F ) s+ (F ™) Isa] + g [(F)Y % L+ (F ) Ll
CA =0t [(F) s dop + (F ) I

ot == [(FY Y Isp + (F ) Is) + ¢ [(F7) Ly + (F ) L)

==l [(F ) Iow + (F )y 1o ]
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CHA = g " [(F ™) Iy + (F ™) Iga] + ¢ [(F) A Ly + (F ) 1]
Cot =" [(F7) doy+ (FY do]

A =g [(F)  Isp+ (F) % Is ] + €0 [(F ) Isp + (F) I
Gt =0 [(F ) T+ (F ) L]

Gt =mym" [(F) Iy + (F) I ] + @ [(F) 0 dop + (F) Ioa]
Copt =mam" [(F) dop+(F ) Iou]

CIA =k [(F D) Isp+ (F Yy I ] + 0 [(FD By + (F D 1]
Ct =K [(F Y dog+ (F Y b ]

CHA =g [((F Y sy + (FT) I
],

COA = g [(F) dop + (F Y Iy,
CoP =g [(FHY (FH2y + (FHP, (FTHY] (6.8)

6.1 Family 0

In [42] it was shown that for homogeneous incompressible monoclinic solids homogeneous
deformations are universal for any three constant unit vectors (N, N, N3) such that N; and
N, are non-parallel, and N3 is normal to the plane of N; and N,. We assume that the angle
between Ny and N, is 0 (0 < 6 < %), and hence, g = N; - N, = cos6. In the reference
configuration let us choose the Cartesian coordinates (X !, X2, X3) such that®

a a a9

Nl:ﬁ’ Nz—cose8 +sinf — X2’ N3=m, (6.9)
i.e.,
cosf, A=1
N}=6, N}={sing, A=2. (6.10)
0, A=3

For monoclinic solids the constraints (4.39) still hold. Notice that only the last two sets of
constraints in (5.8) are nontrivial. The universality constraint (5.8);4 implies that

Cyux NE N3 We an = Cyg NE NS Woam, M,N=1,2,3. (6.11)
Explicitly, we have

(CMl cos? 6 + Cpcosf sin@) Wean + (CMl cosfsinf + Cypn sin? 9) We.on
= (CNI c0s?0 + Cycosf sin@) We.im + (CNI cos@sinf + Cy» sin29) Weom . (6.12)

81n order to make the calculations simpler we have chosen o = 0 in (3.65).
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These are three constraints corresponding to (M, N) = (1, 2), (1, 3), (2, 3), and read
(Clz cos? 0 + Cy cos b Sin49) We.11 — (C“ cosfsinf + Cy, sin® 9) W2
+ (=C11cos” 0 + Cyysin’*0) We 12 =0,
(C13cos® 6 + Ca3cos0sinf) W 11 + (Ci3cosfsind + Cozsin®0) We 1
— (€1 c0s? 0 + Crpc080 sinB) W 13 — (€ cosf sinf + Cipsin” 0) We 3 =0,
(C13c08* 0 + C3c08 6 sinf) W 12 + (Ci3cos0sin6 + Cozsin’0) W 2

— (C1ac08”0 4 Crrcos0sin) W, 13 — (CracosOsind + Crsin®0) We 03 =0.

(6.13)
Suppose [C4p] is diagonal. From (6.13),, one concludes that cos & W 13 + sin We 23 =0,
which must hold for any 6 € (0, Z). This implies that W 13 = W 23 = 0. Substituting this
back into (6.13), one concludes that (Ci3cos0 + Cop;8in6) (cos9 We.11 + sin6 WMZ) =
0, which implies that Wg ;1 = We 12 = 0. Substituting these into (6.13); one obtains
(C13 cosf sin® + Cyj sin® 0) We.22 = 0, which implies that W 5, = 0. Therefore, we have
shown that

(We,)a=(We2)a=0, A=123. (6.14)
The universality constraint (5.8);5 implies that
(Cp1 €086 + Cppa8in6) (C1* cosd Wk + Co% sinb Wy k)
+ (Cux C ¥ cosf + Cyx C% sin0) (cos® Wy, 1y + sinf Wy oy ) | (6.15)

is symmetric in (M N). For M = 1, N = 3, and diagonal [C 3], the universality constraint
is simplified to read

Ci (ZCOSO W13 + sinf W7,23) 4+ Cypsinf W73 =0. (6.16)

This must hold for arbitrary C;; and Cy, and hence, W; 3 = W57,3 = 0. Substituting
this back into the universality constraint and considering simple shear deformations for
which Ci, = C3 =0, one concludes that cos8 W7 1; + 2sin6 W7 1, = 0, which must hold
for an arbitrary 6. Thus, W71, = W5 12 = 0. Substituting these back into the constraint
for simple shear, one concludes that W;33 = 0. For M = 2, N = 3, and simple shear
deformations for which Cy, = Cy3 = 0, the universality constraint is simplified to read:
Ca3 (2Cas + C33)sin® 6 W52 = 0, which implies that W7, = 0. Therefore, we have con-
cluded that W a5 = (W7.4) , =0, A, B=1,2,3.

For homogeneous deformations and uniform material preferred directions only the last
set of constraints in (6.8) are non-trivial and are rewritten in terms of the referential quanti-
ties as (for K, N =1,2,3)

Cun [N N3 8§ + N3 NF 83 + N NS 83 + NJ* N{ 6% ] Wy ag
= Cuk [N N385 + Ny NP 8y + N NS 83 + N N{ 83 W ap - (6.17)
Thus, we have

Cin (cos@ Ws.1x + sinf W&z[() 4 (Cy1cos + Cyy8in0) Wy 1
= Cik (cos8 Wy 1y +sinf Wy oy ) + (Cx1cos6 + Cxosinb) Wy 1y . (6.18)

@ Springer



140 A. Yavari, A. Goriely

Equation (6.18) are three constraints corresponding to (K, N) = (1,2), (1,3), and (2, 3),
and read

(2C12c086 + Cy8in6) Wy 11 — 2C 1 cos6 Wg 1o — Cy1sinf W 2 =0,
(2C13c086 + Cy3sinf@) Wg 11 + Ci3sin6 Wy 1, — (2C  cos O + Cipsin6) Wy 3
— Cy;sinf Wg 3 =0,
(2C13¢086 + Cy38in0) Wy 12 — (2C 12080 4 Cop sinb) Wy 13 + Ci35in0 Wy 2
— Cypsinf Wg 23 =0. (6.19)

The above constraints need to be satisfied for an arbitrary matrix [C 4] with unit determi-
nant. For simple shear in the X2X?-plane (C1» = C3 = 0), (6.19); gives Ca3sind Wy 1o —
Cysin0 Ws 13 = 0, which must hold for arbitrary C,3, and hence Ws 1o = Wg 13 = 0. Thus,
(6.19) is simplified to read

(2C12 cosf + sz sin@) Wgyll — C1| sinf Wgyzz = 0,
(2C13¢c0860 + Cor38inh) W11 —Cny sinf Wg,23 =0, (6.20)
C13 sin Wg’zz — C12 sinf W8,23 =0.

For simple shear in the X!X2-plane (C)3 = Cs;3 = 0), (6.20), gives Cj;sin® Wg o3 = 0,
which implies that Wg 3 = 0. Thus

(2C12c086 + Cypsinf) Wg 11 — Cyysinf Wg 2 =0,
(2C13 cosf + C23 sin@) Wg.ll :0, (621)
C13 sinf Wgﬁzz =0.

The last two equations imply that Wg ; = Wg 2, = 0. Thus, (6.19) implies that (Ws ;) 4 =
(Ws2)a=0, A=1,2,3.
In summary, the universality constraints give us the following

(Wi4) 8 =W24),8=Ws54)p=(W;4)5=0, A,B=1,2,3,
(Wi ) a=Wes1)a=We2)a=Wg 1) a=Wg2)a=0, A=1,2,3. (6.22)

Using a lengthy but standard argument (similar to those of §3.2) one can show that the
constraints (6.22) imply the following result.

Proposition 6.1 For inhomogeneous incompressible nonlinear monoclinic solids, Family 0
deformations are universal for any energy function of the following form

WX, 11, I, I, Is, Is, Iy, Is, 19) = W(Iy, I, I, Is, I, I3, Is, Io)
+H, I, 14, Is, Is, I7, I3, Iy) - X
WX, I, Io I, 1) (6.23)

where (N1, Ny, N3) are constant unit vectors such that N3 is parallel to the Cartesian X 3.
axis.

Remark 6.2 Note that the last term of the energy function in (6.23) has a form identical to
that of compressible monoclinic solids (3.84).
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6.2 Family 1

In [42] it was shown that for Family 1 deformations of homogeneous incompressible mon-
oclinic solids the universal material preferred directions are

0 0
Ny = | cosyi(X) |, No=| cosyn(X) |, (6.24)
+sin ¢ (X) =+ sin ¥, (X)

where ¥ (X) and v,(X) are arbitrary functions such that v (X) # ¥»(X). The constraints
(4.45), (4.47), and (5.13) hold for monoclinic solids as well. The constraints C[%] =0, for
(A,a,b)=2,1,2)and (A, a,b) = (3, 1, 2), require vanishing of some lengthy expressions
that we do not report here. Neither of these two constraints can be satisfied, and hence

oW oWy 0
Y 0z
All the other universality constraints are satisfied. Therefore, we conclude that W =

W(X, Il, 12, 14, 15, I(,, 17, Ig, 19) + W(X, Y, Z, 19) Noting that the term W(X, Y, Z, 19) is
mechanically inconsequential, we have proved the following result.

(6.25)

Proposition 6.3 For inhomogeneous incompressible nonlinear monoclinic solids with any
of the universal material preferred directions given in (6.24), Family 1 deformations are
universal for any energy function of the form W = W(X, I, I, 14, Is, Is, I7, I3, Io).

6.3 Families2and 3

In [42] it was shown that for Family 2 and 3 deformations of homogeneous incompressible
monoclinic solids the universal material preferred directions are

0 0
Ni=| cosi(R) |, No=| cosxa(R) |, (6.26)
+sin x((R) =+ sin x,(R)

where x;(R) # x2(R) are arbitrary functions.

For monoclinic solids, the constraints (4.56), (4.58), and (5.15) still hold. The constraints
C[%] =0,for(A,a,b)=(2,1,2)and (A, a, b) = (3, 1, 2), require vanishing of some lengthy
expressions that we do not report here. Neither of these two constraints can be satisfied, and
hence

awg_awg_o
90~ 9z

6.27)

All the other universality constraints are satisfied. Therefore we conclude that W =
W(R, I}, I, 14, Is, Is, I, Ig, Iy) + W(R, ®, Z, Iy). Noting that the term W(R, ®, Z, Iy) is
mechanically inconsequential, we have proved the following result.

Proposition 6.4 For inhomogeneous incompressible nonlinear monoclinic solids with any of
the universal material preferred directions given in (6.26), Family 2 and 3 deformations are
universal for any energy function of the form W = W(R, I, I, 14, Is, I¢, I7, I3, Io).

Yavari and Goriely [42] showed that for homogeneous incompressible monoclinic solids
Family 4 deformations are not universal. This is the case for inhomogeneous incompressible
monoclinic solids as well.
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6.4 Family 5

In [42] the following universal material preferred directions were reported:

X [ cos& X [ cosé&,
Class i): N;= | =*sing& | , N, = | £sin&, | , &1 #£6&, (6.28)
| O | O
. [0 ] . [0
Class (il): Ny=|x1], No=| cosp |, sinn #0, (6.29)
| 0 | | £sinn |
. [0 ] . [0
Class (ili): N;y=1| 0 |, N,=| cosyp |, cosn #0. (6.30)
E39 | £sin7 |

Noting that sinncosn = 0, Classes (ii) and (iii) become unacceptable (Nl . Nz =0), and
hence the correct universal material preferred directions are:

X cosé& . cos &,
N, = |+sing |, No= |+sing |, & #£&. (6.31)
0 0

This means that the material preferred directions are two families of fibers that are
parallel to the (R, ®) plane and are distributed uniformly in two distinct fixed direc-
tions.

In [40] it was shown that the for Family 5 deformations constraints (4.19) imply
that

IWL AWy W,
R~ 90 ~ 9Z R 9O 93z

aW, oW, W
2 _ T2 _ T2, (6.32)

The above relations hold for inhomogeneous monoclinic solids as well. As was shown in
§4.6 the universality constraints (4.20) imply that Wy 4 = W5 4 = W 4 = W7 4 = 0. For the
universal material preferred direction (6.31), one can show that

Gy =0, for (A,a,b)=(1,1,2)=

C3{Cssing [(1+C2) coséy + Cy Cysingy]

+cosé) [Cy (242CF + C3) coséy + Cs (2C3 + CF) singy] | =0,
G =0, for (A,a,b)=(2,1,2) =

C1*{cost [(—2 4 C22(—6 — 4C22 + C3%) cos &y

+C5 C3(—2 —4C; + C3)sin

+Cysing| [Cs (14 C22 +6C3) cosés + Cs (C2 +6C2) sin& ] } =0,
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Gy =0, for (A,a,b)=(3,2,3)=
¢ C3{Cssingy [(14C3) cosy + €, Cysiny |
+cosé&; [C2 (2 + 2C§ + C%) cosé& + Cs (2C22 + C32) sinéz} } =0. (6.33)
None of the above constraints can be satisfied, and hence

oWg  oWg oW,
=T (6.34)
IR 90 9Z
In summary, we have proved the following result.

Proposition 6.5 For inhomogeneous incompressible nonlinear monoclinic solids Family 5
deformations are not universal.

Table 4 summarizes our results for inhomogeneous incompressible monoclinic solids.

7 Concluding Remarks

In this paper we studied universal deformations in inhomogeneous anisotropic bodies. Equi-
librium equations in the absence of body forces, and arbitrariness of energy functions in
a given class of materials impose certain constraints that we call universality constraints.
We observed that the universality constraints of inhomogeneous solids include those of the
corresponding homogeneous solids. In other words, for a given class of materials universal
deformations and universal material preferred directions are determined by the universal-
ity constraints of the corresponding homogeneous solids. Universal inhomogeneities (posi-
tion dependence of the energy function) are those inhomogeneities that are consistent with
the universality constraints. We characterized the universal inhomogeneities for inhomoge-
neous compressible transversely isotropic, orthotropic, and monoclinic solids. In the case of
inhomogeneous incompressible solids, for each of the six known families of universal de-
formations, and material preferred directions we characterized the corresponding universal
inhomogeneities for inhomogeneous incompressible transversely isotropic, orthotropic, and
monoclinic solids. Table 1 summarizes our results for inhomogeneous compressible trans-
versely isotropic, orthotropic, and monoclinic solids. Tables 2, 3, and 4 summarize our re-
sults for inhomogeneous incompressible transversely isotropic, orthotropic, and monoclinic
solids, respectively.

This classification of universal solutions concludes our universal program for hy-
perelastic materials. It provides a complete collection of solutions that can be used
for applications and can be systematically analyzed by stability methods to look for
the existence of nearby solutions. In our construction for incompressible solids we
have assumed that the choice of material preferred directions is consistent with the
underlying symmetries of the deformation (e.g., radial fibers for radial deformations).
Therefore, our results do not preclude the existence of other universal solutions that
would not preserve the underlying symmetry of the deformations. However, we be-
lieve that these solutions are unlikely to exist and we conjecture that this classification,
like the cases of isotropic incompressible solids, and isotropic anelastic solids is com-
plete.
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